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Abstract.

In this project I will discuss the properties of pointwise convergence of Fourier series. In our MATH 425b lecture,

we learned that by defining

f̂(n) = 1

2π

ˆ π

−π
f(θ)e−inθ dθ, SNf =

N

∑
n=−N

f̂(n)einθ,

we can approximate any f ∈ L2
R[−π,π] with Fourier series SNf with mean-square convergence:

lim
N→∞

∥Snf − f∥2 = 0.

However, this does not give the full picture, as we still cannot approximate f pointwise, not to say uniformly. By

considering the N -th partial sum of the Fourier series

Snf = 1

2π

ˆ
R
DN(x − y)f(y) dy = 1

2π
DN ∗ f

using a family of functions DN called the Dirichlet kernels, we recognize some drawbacks of the Dirichlet kernel

and therefore the Fourier series. Namely, The Dirichlet kernel is not an approximation identity (section 1), so

the limit of its convolution with f does not necessarily tend to f pointwise, except when f is Lipschitz (section 3).

Particularly we will prove the existence of a function such that Snf(x)→∞ at some x, contrary to the boundedness

of f (section 2).

Then we will move on to discuss good kernels, namely the Fejér kernel

FN(x) = 1

n

n−1
∑
k=0

Dk(x),

the result of Cesàro summation on the Dirichlet kernel (section 4). An approximation identity, the Fejér kernel allows

for pointwise and even uniform convergence of the uniform series under convolution FN ∗ f (section 5).

Lastly, we will introduce an interesting phenomenon about Fourier series: the Gibbs’s phenomenon, which describes

the overshooting behavior of Fourier series near jump discontinuities.

Without loss of generality, I will limit my approximated function f as a L2
R[−π,π] function: a 2π-periodic Riemann

integrable L2-bounded (in the Riemann sense) function.
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Section 1. The Dirichlet Kernel and its Problems

We begin the section by introducing the Dirichlet Kernel.

Definition 1. The N -th Dirichlet kernel DN(x) ∶ [−π,π]→ C is defined by the trigonometric polynomial

DN(x) =
N

∑
n=−N

einx = e−iNx +⋯ + e−ix + 1 + eix +⋯ + eiNx.

The Dirichlet kernel itself has Fourier coefficients f̂(n) = 1 for all ∣n∣ ⩽ N , and f̂(n) = 0 otherwise. Recalling the

N -th partial sum of Fourier series of f :

SNf(x) =
N

∑
n=−N

f̂(n)einx = f̂(−N)e−iNx +⋯ + f̂(−1)e−ix + f̂(0) + f̂(1)eix +⋯ + f̂(N)eiNx,

where

f̂(n) = 1

2π

ˆ π

−π
f(θ)e−inθ dθ,

We see similarities between DN and SNf , but we are still unsure about their exact relation. The following propo-

sition establishes the relation.

Proposition 2.

SN(f)(x) = (f ∗DN)(x).

Proof. First we expand SN(f)(x) to obtain

SN(f)(x) =
N

∑
n=−N

f̂(n)einx =
N

∑
n=−N

1

2π
einx
ˆ π

−π
f(θ)e−inθ dθ.

For each ∣n∣ ⩽ N , notice that

1

2π
einx
ˆ π

−π
f(θ)e−inθ dθ = 1

2π

ˆ π

−π
f(θ)einx−inθ dθ = 1

2π

ˆ π

−π
f(θ)ein(x−θ) dθ.

Now denote Sn(f)(x) ∶= f̂(n)einx, ∣n∣ ⩽ N to denote the "n-th term" of the partial sum. Similarly, denote

Dn(x) = einx as the "n-th term" of the Dirichlet kernel. We claim that Sn(f)(x)∝Dn ∗ f(x). Indeed,

Sn(f)(x) =
1

2π

ˆ π

−π
f(θ)ein(x−θ) dθ = (Dn ∗ f)(x).

The general case SN(f)(x) = (f ∗DN)(x) follows from the linearity of convolution.

Remark. It is important to note that we actually "cheated" a bit and used a slightly different notation of

convolution. The most standard definition of convolution of f, g ∈Rloc on R is

f ∗ g(x) =
ˆ
R
f(y)g(x − y) dy.

However, considering 2π-periodic functions f, g ∈Rloc, it makes more sense to define

f ∗ g(x) = 1

2π

ˆ π

−π
f(x − y)g(y) dy.

This way the convolution would make more sense as a "weighed average". Merely a scalar multiplication,

the algebraic properties of convolution are preserved.
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Proposition 3. The N -th Dirichlet exhibits a closed form in

DN(x) =
sin((N + 1

2
)x)

sin(x/2)
.

Proof. Denote ω ∶= eix. First we split the summation for two geometric sequences with common multiple ω:

DN(x) =
N

∑
n=−N

ωn =
−1
∑
n=−N

ωn +
N

∑
n=0

ωn.

The first term of negative exponents has first term ω−N , hence the sum of the sequence is

−1
∑
n=−N

ωn = ω
−N(1 − ωN)

1 − ω
.

Similarly, the second term of nonnegative exponents has first term ω0 = 1, hence the sum of the sequence is

N

∑
n=0

ωN = 1(1 − ωN+1)
1 − ω

.

Summing the two parts, we obtain

DN(x) = ω
−N − ωN+1

1 − ω
= ω

−N−0.5 − ωN+0.5

ω−0.5 − ω0.5
.

Note that in the second "=" we divided all terms by ω0.5. As ω = eix ∈ C, we can use the fact that z − z = 2Im z to

represent the expression as

DN(x) = −2Im ωN+0.5

−2Im ω0.5
=
Im (cis e(N+ 1

2 )ix)

Im (cis e 1
2 ix)

=
sin((N + 1

2
)x)

sin(x/2)
,

as desired.

Remark. Although DN involves the use of imaginary numbers ω = eiNx, proposition 3 actually implies

that DN is a function that maps R to R - the imaginary parts get cancelled out.

In our 425b lecture, we proved the proposition that the Dirichlet kernel performs well when convolving with the

target function f in estimating the L2 norm of f . The idea is to use triangular inequality to bounded ∥SNf − f∥2
with components that tend to zero under certain conditions using theL1 approximation theorem, Stone-Weierstraß,

and properties of orthogonal projection. Hence we will state the proposition here without proof.

Proposition 4. (L2 approximation of Dirichlet kernel)

lim
N→∞

∥SNf − f∥2 = 0.

Nevertheless, the Dirichlet kernel is not a good kernel. Primarily, it is not an approximate identity.

We know that if {DN}N is indeed an approximate identity, then with f ∈ L2
R[−π,π] bounded, we have that

lim
N→∞

DN ∗ f(x) = f(x)
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for each x of continuity (of f ). Therefore, for f ∈ C(a, b), we have that

lim
N→∞

DN ∗ f ⇉ f on any [c, d] ⊂ (a, b).

We first show that {DN}N is not an approximate identity in the following proposition, then in the next section

(section 2) we will further prove the existence of a function where the Dirichlet kernel officially fails to work.

Proposition 5. The Dirichlet kernel {DN}N is not an approximate identity.

Proof. We test {DN}N on the defining properties of an approximate identity, before which we shall have a look

at an approximate shape of {DN}N .

−3 −2 −1 1 2 3
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10

12

x

Dn(x)

The above graph displays DN for N ∈ [5]. It seems like although the sequence does indeed look like an approx-

imate identity, the increasing amplitude on the negative side may be troublesome as ∥DN∥1 may no longer be

uniformly bounded. We claim that the Dirichlet kernel fails to satisfy this property.To see, so, first observe that

DN , as the quotient of two odd functions, is even. Therefore we only need to consider ∥DN∥1[0,π] =
´ π
0

∣DN ∣ dx.

Considering its closed form expansion, we have that

ˆ π

0

∣
sin(N + 1

2
)x

sin(x/2)
∣ dx = 2

ˆ π
2

0

∣ sin((2N + 1)x)
sinx

∣ dx (Change of vars:
x

2
↦ x)

> 2

ˆ π
2

0

∣sin((2N + 1)x)∣
x

dx (Comparison: ∣sinx∣ < x on x ∈ [0, π/2])

= 2

ˆ (2N+1)π2

0

∣sinu∣
u

du (Change of vars: (2N + 1)x↦ u)

> 2

ˆ Nπ

0

∣sinu∣
u

du = I (Truncating integer multiples of π).
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From the lower bound I we can already see the trend that I is unbounded. Indeed, a few more intermediary

steps gives an explicit divergent lower bound that proves the claim. Note that

I =
ˆ nπ

0

∣sinu∣
u

du =
n−1
∑
k=0

ˆ (k+1)π

kπ

∣sinu∣
u

du.

For k ∈ [n − 1]0, (k + 1)π ⩾ u, hence

ˆ (k+1)π

kπ

∣sinu∣
u

du ⩾
ˆ (k+1)π

kπ

∣sinu∣
(k + 1)π

du = 1

(k + 1)π

ˆ (k+1)π

kπ

∣sinu∣ du
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=2

= 2

(k + 1)π
.

Therefore

I = 2
n−1
∑
k=0

2

(k + 1)π
= 4

π

n−1
∑
k=0

1

k + 1
.

The final term returns the n-th partial sum of a harmonic series, which trivially diverges. In fact, we can impose

a lower bound of logn, which also diverges, to conclude ∥DN∥1 > 4π−1 logn→∞.

Remark. The Dirichlet kernel does satisfy the first property of unit signed mass.

Proof. For N = 0, D0 ≡ 1, hence its signed mass over [−π,π] is 2π. We further claim that DN also has

signed mass of 2π. Indeed, consider each DN as an increment from DN−1:

DN =DN−1 + eiNx + e−iNx ⇒
ˆ π

−π
DN dx =

ˆ π

−π
DN−1 dx +

ˆ π

−π
eiNx + e−iNx dx.

However, the red part evaluates to zero. Considering z + z = 2Re z, we have that

eiNx + e−iNx = 2Re eiNx = 2 cosNx,

with definite integral [2N−1 sinNx]π−π = 0. The argument follows by induction. We can then conclude:

1

2π

ˆ π

−π
DN(x) dx = 1,

as desired.
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Section 2. The function where the Dirichlet Kernel fails to work

Earlier we proved that the Dirichlet kernel is not an approximate identity. However, as a sufficient condition, dis-

proving the Dirichlet kernel does not provide sufficient grounds to proving its failure to converge to f pointwise.

Therefore, we prove that there exists a function f where SNf = DN ∗ f fails to converge at some x (say zero for

simplicity) by constructing an explicit example.

Proposition 6. There exists a function f ∈ L2
R[−π,π] such that the Fourier series Snf diverges at zero.

Proof. We separate the question into smaller parts.

Part 1. The sawtooth function

Problem: Stein Ex. 2.8. The sawtooth function f ∶ (−π,π)→ R is defined as

f(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−π
2
− x

2
, x ∈ (−π,0);

0, x = 0;

π
2
− x

2
, x ∈ (0, π).

Its affiliated Fourier series is

f̂(x) = 1

2i
∑
n≠0

einx

n
.

Considering the Fourier coefficients, if f̂(0) is trivially zero as
´ π
−π f(θ) dθ = 0. If n ≠ 0, we have that

f̂(n) = 1

2π

ˆ π

−π
f(θ)e−inθ dθ (Definition of Fourier series)

= 1

2π
[
ˆ π

0

(π
2
− θ
2
)e−inθ dθ −

ˆ 0

−π
(−π

2
− θ
2
)e−inθ dθ] (Definition of Sawtooth)

= 1

2π
[
ˆ π

−π
−θ
2
e−inθ dθ + (

ˆ π

0

π

2
e−inθ dθ +

ˆ 0

−π
−π
2
e−inθ dθ)] (Algebra inside integral)

= 1

2π
(I1 + I2).

Evaluating the integrals on their own, we have, for I1,

I1 =
ˆ π

−π
−θ
2
de−inθ

= [ θ

2in
e−inθ]

π

−π
−
ˆ π

−π

1

2
e−inθ dθ

= π

2in
e−inπ − π

2in
einπ + [ 1

2in
e−inθ]

π

−π

= π

2in
2 cosnπ − 1

2in
2 sinnπ = π

in
cosnπ.

Then for I2,

I2 = [− π

2in
e−inθ]

π

0
+ [ π

2in
e−inθ]

0

−π

= − π

2in
e−inπ + π

2in
+ π

2in
− π

2in
einπ

= π

in
− π

2in
2 cosnπ = π

in
− π

in
cosnπ.
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We then conclude with that f̂(n) = 1
2π

⋅ π
in

= 1
2ni

, as desired.

The sawtooth function allows us to observe that the series converges for every x, including the origin. Note

that the sawtooth function sees a jump discontinuity at zero, where

lim
x→0−

f(x) = −π
2
, f(0) = 0, lim

x→0+
f(x) = +π

2
.

When the series is evaluated at zero, its value (zero) is the average of the values of f(x) as x approaches the

origin from the left and the right - a symmetry. This allows for an opportunity to break it.

Part 2. Symmetry-breaking

We can transform the sawtooth function as we wish. Particularly, consider f ∶ (−π,π)→ C:

f(θ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−iπ − iθ, x ∈ (−π,0);

0, x = 0;

iπ − iθ, x ∈ (0, π).

From Stein 2.8, we know that

f(θ)∝ ∑
n≠0

einθ

n
,

and the symmetry is preserved through addition of +n and −n to the series for each n. We can then break the

symmetry to obtain the "lower half" of the series:

f̃(θ) =
−1
∑
n=−∞

einθ

n
.

Accordingly, we define

fN(θ) ∶= ∑
1⩽∣n∣⩽N

einθ

n
, f̃N(θ) = ∑

−N⩽n⩽−1

einθ

n
.

We claim that ∣f̃N(0)∣ ⩾ c logN , a trivial property of the harmonic series. Additionally, we claim that fN(θ) is

uniformly bounded in N and θ using the following lemma.

Lemma. Suppose that the Abel means Ar = ∑∞n=1 rncn of the series ∑∞n=1 cn are bounded as r → 1−. If cn =
O(n−1), then the partial sums SN = ∑Nn=1 cn are bounded.

Proof of lemma. We wish to estimate the difference

SN −Ar =
N

∑
n=1

(cn − rncn) −
∞
∑

n=N+1
rncn.

As r → 1−, we can let r = 1 −N−1. Additionally, choose M such that ∣cn∣ ⩽Mn−1 (cn = O(n−1).) Then

∣SN −Ar ∣ ⩽
N

∑
n=1

∣cn∣ (1 − rn) +
∞
∑

n=N+1
rn ∣cn∣ (Triangle Inequality)

⩽M
N

∑
n=1

n−1(1 − rn) +M
∞
∑

n=N+1
rnn−1 (∣cn∣ bounded above)

⩽M
N

∑
n=1

(1 − r) +MN−1 ∞
∑

n=N+1
rn (n−1 ⩽ N−1; (1 − rn) ⩽ n(1 − r))

⩽MN(1 − r) +MN−1(1 − r)−1 = 2M. (Geometric sum)

Hence if ∣Ar ∣ ⩽M as well, ∣SN ∣ ⩽ 3M .
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Applying the lemma to the series defining fN(θ), consider the series

cn =
einθ

n
+ e

−inθ

n

for n ≠ 0. Clearly cn = O(1/ ∣n∣), and the Abel means of the series are

Ar(f)(θ) =
∞
∑
n=1

rncn = ∑
n≠0

r∣n∣
einθ

n
,

which is bounded in both n and θ as r ∈ (0,1].
Remark. The Abel means Ar(f)(θ) is actually the convolution between f and the Poisson kernel

Pr(θ) =
∞
∑
n=−∞

r∣n∣einθ.

Therefore SN(f)(θ) is uniformly bounded in both N and θ, as desired.

Part 3. Construction of function

Now that fN and f̃N are trigonometric polynomials of degree N , we can define through a displacement factor

PN(θ) = e2iNθfN(θ), P̃N(θ) = e2iNθf̃N(θ).

While fN has non-vanishing Fourier coefficients when 1 ⩽ ∣n∣ ⩽ N , the coefficients of PN are non-vanishing for

1 ⩽ ∣n − 2N ∣ ⩽ N . Considering the M -th partial sums of the series PN , we have the following lemma.

Lemma.

SM(PN) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

PN , M ⩾ 3N ;

P̃N , M = 2N ;

0, M < N.

Proof of lemma. BecausePN only has non-vanishing terms on n ∈ {N,N + 1,⋯,2N − 1,2N + 1,⋯,3N − 1,3N},

the partial sum for allM < N takes zero. ForM ∈ [N,2N −1]∩N, SM truncates the terms of PN starting from

N , until M = 2N where the negative terms of fN are fully summed. Therefore S2N(PN) = P̃N . Similarly, for

M ∈ [2M + 1,3N] ∩N, SM truncates the terms of PN starting from 2N + 1, until M = 3N where the positive

terms of fN are also fully summed. For M > 3N the terms of PN fully vanishes hence SM(PN) = PN

thereafter. Hence when M = 2N , the summation operator SM breaks the symmetry of PN .

Lastly, we construct a convergent series of ∑ αk and a sequence of integers {Nk}k, increases rapidly such that

• Nk+1 > 3Nk,

• αk logNk →∞ as k →∞.

Taking αk = k−2 and Nk = 32
k

as an example, we can write

f(θ) =
∞
∑
k=1

αkPNk(θ).

The PN ’s are results of translation from fN(θ), hence they are uniformly bounded; by Weierstraß’ M -test the

series f(θ) converges uniformly to a continuous periodic function. However, for each PNm wherem ∈ N, taking

S2Nm breaks the symmetry, as

∣S2Nm(f)(0)∣ ⩾ cαm logNm,

where c logNm presents a lower bound as ∣f̃N(0)∣ ⩾ c logN and S2Nm(f) = f̃Nm . As the right-hand side is

unbounded, such f indeed has its Fourier series diverging at zero.
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Section 3. The case where f is Lipschitz

In section 2, we proved that there exists a function f by construction where SN(f)(0) →∞ as N →∞. If we wish

for asymptotic behavior of SN(f)(x) at any x, we could simply conduct a translation to diverge SN(f) at the point

of choice. Nevertheless, the Dirichlet kernel isn’t fully obsolete when discussing pointwise convergence. In fact, a

slightly stronger condition is required for pointwise convergence: Lipschitz continuity. We first recall the definition

of Lipschitz continuity from 425a.

Definition 7. We say that f ∶ X → Y is Lipschitz continuous there exists a uniform M ⩾ 0 such that for

every x1, x2 ∈X ,

dY (f(x1), f(x2)) ⩽MdX(x1, x2).

We first prove a weaker statement, which requires a stronger premise: differentiability.

Theorem 8. Let f ∶ L2
R[−π,π] be a function that is differentiable at zero. Then

lim
N→∞

SN(f)(0)→ f(0).

Remark. If f is defined on the circle, f(−π) = f(π), so differentiability can be defined for every x. Subsequently,

the above theorem can be generalized to every point on the circle through translation.

Proof. We first define the function of differentiation at zero. Define F ∶ (−π,π)→ R as

F (t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(f(−t) − f(0))/t, t ∈ (−π,0) ∪ (0, π)

−f ′(0), t = 0.

Note that F (t) → −f ′(0) as t → 0. As f is differentiable at zero, F is bounded in some neighborhood (−δ, δ) of

zero. Additionally, for t ∈ (−π,−δ]∪ [δ, π), F (t) is integrable on the region as f is Riemann integrable and ∣t∣ > δ
(therefore F (t) does not explode at any point and discontinuities remain of measure zero.)

Lemma. Let f be bounded on [a, b]. If c ∈ (a, b), and if for all δ > 0 the function is integrable on [a, c − δ] and

[c + δ, b], then f is integrable on [a, b].

Proof of lemma. Let M denote the bound of f . Choose ε > 0, and let P1 and P2 be partitions of [a, c − δ] and

[c + δ, b], where f is integrable, so that for i ∈ [2] we have

U(Pi, f) −L(Pi, f) <
ε

3
.

Then take the partition P = P1 ∪ {c − δ} ∪ {c + δ} ∪ P2, we choose δ small enough so that δ2M < ε/6 so that

the partitions {c − δ} ∪ {c + δ} together integrates to < ε/3. Thus U(P, f) −L(P, f) < ε as desired.

Because the δ is arbitrary, F is also Riemann integrable by the above lemma, with
ˆ π

−π
F (t) dt =

ˆ π

−π

f(−t) − f(0)
t

dt.

Now we return to the statement. We wish to consider the asymptotic behavior of SN(f)(0) − f(0). Using the

unit signed mass property of the Dirichlet kernel, we have, through a common trick in convolutions,
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SN(f)(0) − f(0) = 1

2π

ˆ π

−π
f(−t)DN(t) dt − f(0)

= 1

2π

ˆ π

−π
f(−t)DN(t) − f(0)DN(t) dt

= 1

2π

ˆ π

−π
[f(−t) − f(0)]DN(t) dt

= 1

2π

ˆ π

−π
F (t)tDN(t) dt.

Here we consider the closed form expression of DN(t). Particularly,

SN(f)(0) − f(0) = 1

2π

ˆ π

−π
F (t)t

sin((N + 1
2
)t)

sin(t/2)
dx = 1

2π

ˆ π

−π

F (t)t
sin(t/2)

[sinNt cos t
2
+ cosNt sin

t

2
] dx.

Here we consider an additional lemma covered in 425b lecture.

Lemma. (Riemann-Lebesgue) f̂(n)→ 0 as n→∞.

Proof of lemma. The lemma follows directly from Bessel’s inequality, which states that the `2 norm of Fourier

coefficients is no greater than the L2 norm of the function f :

∥f̂n∥`2 ⩽ ∥f∥L2 .

As f ∈ L2
R, the convergence of the (nonnegative) series imply that f̂n → 0 (or else the series explodes!)

With Riemann-Lebesgue lemma, we can consider

1

2π

ˆ π

−π

F (t)t cos(t/2)
sin(t/2)

sinNt dx + 1

2π

ˆ π

−π
(F (t)t) cosNt dx.

The functions at the left - F (t)t cos(t/2)/ sin(t/2) and F (t)t - are both L2
R; therefore the integral tends to zero as

N →∞ as the Fourier coefficients are sums of cosNt and sinNt. This proves the theorem.

Now consider the above proof, especially where the differentiability is applied:

As f is differentiable at zero, F is bounded in some neighborhood (−δ, δ) of zero.

Indeed, if f is Lipschitz at zero instead, F is still bounded in some neighborhood (−δ, δ) of zero; although we

cannot define F (t) = −f ′(0) at t = 0 explicitly, considering the equivalence class with a measure-zero differing set

brings us to the same conclusion. We state the result here.

Theorem 9. Let f ∶ L2
R[−π,π] be a function that is locally Lipschitz at zero. Then

lim
N→∞

SN(f)(0)→ f(0).

Subsequently, if f is Lipschitz over the domain, then

SN(f)→ f ;

and on any interval [a, b],
SN(f)⇉ f.
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Section 4. Cesàro summation and Fejér kernel

In previous sections, we saw that the Dirichlet kernel does not converge at every point, but it has some nice

properties (for example, unit signed mass) that we wish to keep when considering an alternative. To do so, we

introduce the concept of Cesàro means and the Fejér kernel. Cesàro means allows us to compute an unambiguous

limit of series. See the following example.

Example 10. Consider the series

s =
∞
∑
k=0

(−1)k = 1 − 1 + 1 − 1 +⋯.

Its partial sums form the sequence {1,0,1,0,⋯}. With two subsequential limits in {1,0}, the partial sum

has no limit in the classical sense - it diverges.

Definition 11. We define the N -th Cesàro mean of the sequence {sk}, or the N -th Cesàro sum of the

series s = ∑∞k=0 ck, as

σN = s0 + s1 +⋯ + sN−1
N

.

If σN → σ as N →∞, the series ∑ ck is Cesàro summable to σ.

Example 12. Observing the above example,

σN = 1 + 0 +⋯ + sN−1
N

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1
2
, N even;

N+1
2N

, N odd.

The N -thCesàro sum converges to 1
2

, so s is Cesàro summable to 1
2

.

The Cesàro summation criterion is more inclusive than convergence criterion. The example above shows an ex-

cample where the series s is Cesàro summable but does not converge; the proposition below gives an explicit proof

of the statement.

Proposition 13. If a series converges to s, then it is also Cesàro summable to the same limit s.

Proof. If the series converges to a limit s, its partial sums form a converging sequence. Primarily, for every ε > 0

there exists N∗ large such that N ⩾ N∗ ⇒ sN ∈ (s − ε, s + ε). Then taking the N -th Cesàro sums, N ≫ N∗,

σN = s0 + s1 +⋯ + sN−1
N

= N−1 ⎛
⎝

N∗

∑
k=0

sk +
N

∑
N∗+1

sk
⎞
⎠
.

The second term has sk ∈ (s − ε, s + ε), hence

N−1 N

∑
N∗+1

sk =
(N −N∗)sk

N

N→∞→ (s − ε, s + ε),

whereas the first term has constant N∗-th partial sum, so N−1(⋅) vanishes as N tends to infinity. As the choice

of ε is arbitrary, σN → s as N →∞, as desired.
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We then consider the N -th Cesàro mean of the Fourier series. By the definition of the Dirichlet kernel, we have

σN(f)(x) = S0(f)(x) +⋯ + SN−1(f)(x)
N

= (D0 ∗ f)(x) +⋯ + (DN−1 ∗ f)(x)
N

.

Because convolutions are linear, we can write

σN(f)(x) = (f ∗ FN)(x),

where FN(x) is the N -th Fejér kernel: an average of the Dirichlet kernels.

Definition 14. The N -th Fejér kernel is defined as

FN(x) = D0(x) +⋯ +DN−1(x)
N

.

Proposition 15. The N -th Fejér kernel exhibits a closed form in

FN(x) = 1

N

sin2(Nx/2)
sin2(x/2)

.

Proof. Considering the closed form of the n-th Dirichlet kernel, n ∈ [N],

Dn(x) =
sin((n + 1

2
)x)

sin(x/2)
.

(Note that here we used lowercased n because we need the capitalized N for the Fejér kernel.) Then

NFN(x) =
N−1
∑
n=0

Dn =
∑N−1
n=0 sin((n + 1

2
)x)

sin(x/2)
=
∑N−1
n=0 sin((n + 1

2
)x) sin(x/2)

sin2(x/2)
.

We utilize the product-to-sum formula. For each n ∈ [N − 1]0,

sin((n + 1

2
)x) sin x

2
= 1

2
(cosnx − cos(n + 1)x) .

Then the numerator eliminates to 1
2
(cos 0 − cosNx) = 1

2
(1 − cosNx). Applying double angle formula,

NFN(x) = sin2(Nx/2)
sin2(x/2)

,

as desired.

Section 5. Pointwise convergence of Fejér kernel

The interesting and important property of the Fejér kernel is that it is an approximation identity. This property

directly results in Cesàro summability of integrable functions, which, in turn, allows for a number of important

results in Fourier series.

Proposition 16. The Fejér kernel {FN}N is an approximate identity.

Proof. Recall the definition of the Fejér kernel:

FN(x) = D0(x) +⋯ +DN−1(x)
N

.

We can observe the behavior of the Fejér kernel, just like the case for Dirichlet kernel.

12



−3 −2 −1 1 2 3

2

4

6

8

10

x

Dn(x)

We see that the Fejér kernel, including the squared sine terms, no longer exhibits oscillations in negative y.

Therefore we only need to check for (signed) unit mass and asymptotic culminating behavior at origin. For the

signed unit mass, we have that

1

2π

ˆ π

−π
FN(x) dx =

N−1
∑
n=0

1

2Nπ

ˆ π

−π
Dn(x) dx

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=2π

= 1.

Regarding the culminating behavior, we wish to prove that

lim
N→∞

[
ˆ δ

−π
+
ˆ π

δ

]FN(x) dx = 0.

Indeed, consider the closed form of the Fejér kernel, we observe that for

FN(x) = 1

N

sin2(Nx/2)
sin2(x/2)

,

sin2(x/2), a continuous function, exhibits a positive infimum on the compact set [−π,−δ]∪ [δ, π] for every δ > 0;

denote it cδ . On the other hand, sin2(Nx/2) is bounded by ±1; therefore we have that
ˆ
δ⩽∣x∣⩽π

∣FN(x)∣ dx ⩽
ˆ
δ⩽∣x∣⩽π

1

Ncδ
dx

N→∞→ 0.

Therefore {FN}N is indeed an approximate identity.

We can now establish the result of pointwise convergence in terms of Fejér kernel and Cesàro summability.
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Theorem 17. If f ∈ L2
R[−π,π], then the Fourier series of f is Cesàro summable to f at every point of

continuity of f . Additionally, if f is 2π-periodic and continuous, then the Fourier series of f is uniformly

Cesàro summable to f .

Proof. As the Fejér kernel is an approximate identity, its convolution with any bounded, locally Riemann in-

tegrable f approaches f at every point of continuity of f . We can therefore write, for x ∈ [−π,π] where f is

continuous,

lim
N→∞

(FN ∗ f)(x)→ f(x).

As (FN ∗ f)(x) = σN(f)(x), we see that the N -th Cesàro sum of f indeed converges to f(x). The claim for

uniform summability similarly is derived from the results of approximate identity: if f is continuous on an

open (a, b) then for any compact [c, d] ⊂ (a, b) the uniform convergence holds:

lim
N→∞

FN ∗ f ⇉ f.

Now as f is continuous and periodic, taking any continuous interval of length > 2π and take a 2π-length subset

suffices for uniform convergence.

Lastly, we restate a theorem that has been proven in 425b lecture. However, now equipped with knowledge of

Cesàro summability, we can now view the theorem in a different angle.

Corollary 18. The class of continuous periodic functions Cper[−π,π] can be uniformly approximated by

trigonometric integrals; the trigonometric polynomials are dense in Cper[−π,π].

Proof. Note that the Cesàro means are trigonometric polynomials themselves. As the Fourier series of f is

uniformly summable to f , take the trigonometric polynomials defined by the Cesàro means suffices.
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Section 6. The Gibbs Phenomenon

In this section, we talk a bit about the Gibbs’s phenomenon, which states that near a jump discontinuity, the Fourier

series of a function overshoots (or undershoots) it by approximately 9% of the jump. We consider the following

problem regarding the sawtooth function.

Problem: Stein Ex. 3.20. Let f(x) denote the sawtooth function (as defined in proposition 6). The Fourier

series of f is

f̂(x) = 1

2i
∑
n≠0

einx

n
=

∞
∑
n=1

sinnx

n
,

and f has a jump discontinuity at the origin with f(0+) = π/2, f(0−) = −π/2. Show that

max
0<x⩽π/N

SN(f)(x) − π
2
=
ˆ π

0

sin t

t
dt − π

2
≈ 0.09π.

Proof. We apply the integral expansion of f̂(x). Specifically, we claim that

N

∑
n=1

sinnx

n
= 1

2

ˆ x

0

(DN(t) − 1) dt.

Considering the integrand DN(t) − 1, we have that

DN(t) − 1 =
N

∑
n=−N

eint − e0 =
−1
∑
n=−N

eint +
N

∑
n=1

eint =
N

∑
n=1

eint + e−int.

Again, we utilize the fact that z + z = 2Re z for complex z ∈ C to conclude

DN(t) − 1 =
N

∑
n=1

2 cosnt.

Considering the linearity of integrals, we further attempt to align the equation for each n; consider the right-

hand side, the proof follows from a simple high school integration.

1

2

ˆ x

0

2 cosnt dt = n−1 [sinnt]x0 =
sinnx

n
,

as desired.

To take the maximum of the expression, we consider the first derivative of the integral; define

ϕN(x) = SN(f)(x) − π
2
,

we then have, by the fundamental theorem of calculus,

ϕ′N(x) = S′N(f)(x) = d

dx
(1
2

ˆ x

0

(DN(t) − 1) dt) = DN(x) − 1

2
.

Note that for ϕ′N = x, we need DN(x) = 1 for x ∈ (0, π/N]. Now taking the closed form expression of the

Dirichlet kernel, we then need to solve

sin((N + 1

2
)x) = sin

x

2
.

Now as we don’t expect the two arguments to be equal, we think about the solution where

(N + 1

2
)x + x

2
= π⇒ x = π

N + 1
,
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and we observe that x lies within the desired range of x ∈ (0, π/N]. Evaluating the maximum value,

ϕN(π/(N + 1)) = 1

2

ˆ π
N+1

0

(
sin(N + 1

2
)t)

sin(t/2)
− 1) dt − π

2
(Closed form of Dirichlet kernel)

= 1

2

ˆ π
N+1/2
N+1

0

( sin t

sin(t/(2N + 1))
− 1)( 1

N + 1/2
) dt − π

2
(Transformation t↦ (N + 1/2)t)

N→∞→ 1

2

ˆ π

0

(2N + 1) sin t
(N + 1/2)t

dt − π
2
=
ˆ π

0

sin t

t
dt − π

2
≈ 0.09π, (Taking limit as N →∞)

as desired.

The implication here is that SN(f) reaches a maximum value of approximately 0.59π near zero, and a minimum

value of approximately −0.59π on the other side. Although increasing N improves the L2 difference between f

and f̂ on [−π,π], the overshooting (and undershooting) behavior of Fourier series persists.

The figure below shows the Gibbs’s phenomenon, although for another function - the "square wave", defined as

−1 for x ∈ (−π,0), 1 for x ∈ (0, π). The "square" nature of the square wave provides a more obvious outlook of the

Gibbs’s phenomenon. We see that although the Fourier series for N = 30 approximates the square wave well in

terms of "overall fit" - an indicator of mean-square convergence, near the jumps, at 0, for example, the series still

overshoots - by approximately 0.09π.

−π −π
2

π
2

π

-1

1

Gibbs Phenomenon (N=30)
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