MATH 225 Homework 6

Stanley Hong

April 10, 2022

Problem 1: Goode 7.1.3						
Verify that $\lambda = 3$ and $v = (2, 1, -1)$ are an eigenvalue/eigenvector pair for the matrix $A = \begin{bmatrix} 1 & -2 & -6 \\ -2 & 2 & -5 \\ 2 & 1 & 8 \end{bmatrix}$.						
Solution. We use the equation $Av = \lambda v$. Here,						
$Av = \begin{bmatrix} 1 & -2 & -6 \\ -2 & 2 & -5 \\ 2 & 1 & 8 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 6 \\ 3 \\ -3 \end{bmatrix} = 3 \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix}.$						
Problem 2: Goode 7.1.7						
Given that $v_1 = (1, -2)$ and $v_2 = (1, 1)$ are eigenvectors of $A = \begin{bmatrix} 4 & 1 \\ 2 & 3 \end{bmatrix}$, determine the eigenvalues of A .						
Solution. Consider $Av = \lambda v$. For $v_1 = (1, -2)$, $Av = (2, -4) \Rightarrow \lambda_1 = 2$. For $v_2 = (1, 1)$, $Av = (5, 5) \Rightarrow \lambda_2 = 5$.						
Problem 3: Goode 7.1.18						
Determine the eigenvalues and eigenvectors of $A = \begin{bmatrix} 3 & -2 \\ 4 & -1 \end{bmatrix}$.						
Solution. The characteristic polynomial is $\lambda^2 - 2\lambda + 5$, setting it to zero gives $\lambda_1 = 1 + 2i$, $\lambda_2 = 1 - 2i$. Now consider $A_1 = \begin{bmatrix} 2-2i & -2 \\ 4 & -2-2i \end{bmatrix}$ and $A_2 = \begin{bmatrix} 2+2i & -2 \\ 4 & -2+2i \end{bmatrix}$. Solving the coefficient matrix respectively gives the eigenvectors $v_1 = r(1+i,2)$ and $v_2 = s(1-i,2)$.						

Problem 4: Goode 7.1.21

Determine the eigenvalues and eigenvectors of $A = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$.

Solution. The characteristic polynomial is $(3 - \lambda)(\lambda^2 - 4\lambda + 3)$, giving eigenvalues $\lambda_1 = 1$, $\lambda_2 = 3$. Now consider $A_1 = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & -1 \\ 1 & -1 & 1 \end{bmatrix}$ and $A_2 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & -1 & -1 \\ 1 & -1 & -1 \end{bmatrix}$. Solving the coefficient matrix respectively gives the eigenvectors $v_1 = r(0, 1, 1)$ and $v_2 = s(0, 1, -1)$

Problem 5: Goode 7.1.34

Consider the matrix $A = \begin{bmatrix} 1 & -1 \\ 2 & 4 \end{bmatrix}$.

- Show that the characteristic polynomial of *A* is $p(\lambda) = \lambda^2 5\lambda + 6$. (a)
- Show that A satisfies its characteristic equation. That is, $A^2 5A + 6I_2 = 0_2$. (This result is known as (b) the Cayley-Hamilton Theorem and is true for general $n \times n$ matrices.)
- Use the result from (b) to find A^{-1} . (c)

Solution. We solve the problem step by step.

(a)
$$A - \lambda I = \begin{bmatrix} 1 - \lambda & -1 \\ 2 & 4 - \lambda \end{bmatrix}$$
. The characteristic equation is then $\det(A - \lambda I) = (1 - \lambda)(4 - \lambda) + 2 = \lambda^2 - 5\lambda + 6$.
(b) Consider $A^2 - 5A + 6I_2 = \begin{bmatrix} 1 & -1 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 2 & 4 \end{bmatrix} - 5\begin{bmatrix} 1 & -1 \\ 2 & 4 \end{bmatrix} + 6\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} -1 - 5 + 6 & -5 + 5 + 0 \\ 10 - 10 + 0 & 14 - 20 + 6 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$.
(c) $(A^{-1})(A^2 - 5A + 6I_2) = A - 5I_2 + 6A^{-1} = 0$. This gives

$$A^{-1} = \frac{1}{6}(5I_2 - A) = \frac{1}{6} \begin{bmatrix} 4 & 1 \\ -2 & 1 \end{bmatrix} = \begin{bmatrix} 2/3 & 1/6 \\ -1/3 & 1/6 \end{bmatrix}.$$

Problem 6: Goode 7.1.35

(a) Determine all eigenvalues of
$$A = \begin{bmatrix} 1 & 2 \\ 2 & -2 \end{bmatrix}$$
.

(b) Reduce A to row-echelon form, and determine the eigenvalues of the resulting matrix. Are these the same as the eigenvalues of A?

Solution. We solve the problem step by step.

- (a) The characteristic equation is $\lambda^2 + \lambda 6 = 0$, giving $\lambda_1 = 2$, $\lambda_2 = -3$.
- (b) $A \sim \begin{bmatrix} 1 & 2 \\ 0 & -6 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$. The characteristic equation is then $(1 \lambda)^2 = 0$, giving $\lambda = 1$. It is clearly not the same as the eigenvalues of A.

Problem 7: Goode 7.1.43

Let A be an $n \times n$ matrix. Prove that A and A^T have the same eigenvalues.

Proof. It suffices to show that $det(A^T - \lambda I) = det(A - \lambda I)$. From $det(A) = det(A^T)$ for all *A*, we have

$$det(A^{T} - \lambda I) = det(A^{T} - \lambda I)^{T}$$
$$= det((A^{T})^{T} - \lambda I^{T})$$
$$= det(A - \lambda I).$$

Pro	bler	n 8:	Good	le 7.	2.4

Determine the multiplicity of each eigenvalue and a basis for each eigenspace of $A = \begin{bmatrix} 1 & 2 \\ -2 & 5 \end{bmatrix}$. Hence, determine the dimension of each eigenspace and state whether the matrix is defective or nondefective.

Solution. A has a characteristic equation of $\lambda^2 - 6\lambda + 9 = 0$, giving $\lambda = 3$ of multiplicity 2. The eigenvector is v = r(1,1), so the basis for the eigenspace is (1,1). The dimension is 1, hence A is defective.

```
Problem 9: Goode 7.2.7
```

Determine the multiplicity of each eigenvalue and a basis for each eigenspace of $A = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 2 & -3 \\ 0 & -2 & 1 \end{bmatrix}$. Hence, determine the dimension of each eigenspace and state whether the matrix is defective or nondefective. *Solution.* A has a characteristic equation of $(4 - \lambda)(\lambda^2 - 3\lambda - 4) = 0$, giving $\lambda = 4$ of multiplicity 2 and $\lambda = -1$ of multiplicity 1. Here we check the eigenvalue $\lambda = 4$. $A - 4I = \begin{bmatrix} 0 & 0 & 0 \\ 0 & -2 & -3 \\ 0 & -2 & -3 \end{bmatrix}$. We then see that rank(A - 4I) = 1, implying that dim(E) = 2 for $\lambda = 4$. Geometric multiplicity matches algebraic multiplicity, so A is nondefective.

eigenspace is the line y = 0, as follows:

Solution. We know from problem 32 that det(A) is the product of the eigenvalues of A, and tr(A) is the sum of the eigenvalues of A. We have tr(A) = -3, so the eigenvalues sum to -3. We also have det(A) = -1(13) - (-2)(-10) = -33, so the eigenvalues have product of -33.

Problem 15: Goode 7.3.3

Determine whether $A = \begin{bmatrix} -7 & 4 \\ -4 & 1 \end{bmatrix}$ is diagonizable. Where possible, find a matrix S such that $S^{-1}AS = \text{diag}(\lambda_1, \lambda_2, ..., \lambda_n)$.

Solution. A has an eigenvalue $\lambda = -3$ of multiplicity 2. It then is associated with one eigenvector, and the eigenspace is then of dimension 1, so A is defective. It follows that A is not diagonizable.

Problem 16: Goode 7.3.4

Determine whether $A = \begin{bmatrix} 1 & -8 \\ 2 & -7 \end{bmatrix}$ is diagonizable. Where possible, find a matrix S such that $S^{-1}AS = \text{diag}(\lambda_1, \lambda_2, ..., \lambda_n)$.

Solution. A has two eigenvalue $\lambda = -3$ of multiplicity 2. It then is associated with one eigenvector, and the eigenspace is then of dimension 1, so A is defective. It follows that A is not diagonizable.

Problem 17: Goode 7.3.10

Determine whether $A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & -1 & 1 \end{bmatrix}$ is diagonizable. Where possible, find a matrix S such that $S^{-1}AS =$ diag $(\lambda_1, \lambda_2, ..., \lambda_n)$.

Solution. A has an eigenvalue $\lambda = -2$ of multiplicity 1, and an eigenvalue $\lambda = -1$ of multiplicity 2. From the coefficient matrix, the first eigenspace is formed by the intersection of two linearly independent planes, so it is a line. Similarly, the second eigenspace is also formed by the intersection of two linearly independent planes, so it is also a line. Geometric multiplicity does not match algebraic multiplicity, so *A* is not diagonizable.

Problem 18: Goode 7.3.19

Use the ideas introduced in this section to solve the following system of differential equations:

$$x_1' = 6x_1 - 2x_2, \quad x_2' = -2x_1 + 6x_2$$

Solution. Consider x' = Ax, where $A = \begin{bmatrix} 6 & -2 \\ -2 & 6 \end{bmatrix}$. The transformed system is $y' = (S^{-1}AS)y$, where x = Sy. To determine S, we need the eigenvalues and eigenvectors. The characteristic polynomial is $p(\lambda) = \lambda^2 - 12\lambda + 32$. From this we know v = r(1, -1) for $\lambda = 4$, v = (1, 1) for $\lambda = 8$. We then have a S where $S^{-1}AS = \text{diag}(4, 8)$, so $y'_1 = 4y_1$ and $y'_2 = 8y_2$. This gives $x = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} c_1e^{4t} \\ c_2e^{8t} \end{bmatrix} = \begin{bmatrix} c_1e^{4t} - c_2e^{8t} \\ c_1e^{4t} + c_2e^{8t} \end{bmatrix}$.