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Stanley Hong
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Problem 1: Goode 7.1.3

1 -2 -6
Verify that A =3 and v = (2,1,-1) are an eigenvalue/eigenvector pair for the matrix A=|-2 2 -5]|.
2 1 8

Solution. We use the equation Av = \v. Here,

1 -2 6|2 6 2
Av=1-2 2 5[] 1[|=[3]=3|1
2 1 8|1 -3 -1

Problem 2: Goode 7.1.7

4 1
Given that vy = (1,-2) and vy = (1,1) are eigenvectors of A = l ], determine the eigenvalues of A.
2 3

Solution. Consider Av = Av. For v; = (1,-2), Av =(2,-4) = A\; = 2. For vy = (1,1), Av=(5,5) = Ay = 5.

Problem 3: Goode 7.1.18

3 -2
Determine the eigenvalues and eigenvectors of A = l ]
4 -1

Solution. The characteristic polynomial is A% — 2\ + 5, setting it to zero gives A = 1+ 2i, Ay = 1 — 2i.

, 2-2i -2 2+2i -2 . . , , ,
Now consider A; = and A, = . Solving the coefficient matrix respectively gives
4 -2-24 4 -2+2

the eigenvectors vy = r(1 +4,2) and vy = s(1 -4, 2).
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Problem 4: Goode 7.1.21

3 0 0
Determine the eigenvalues and eigenvectorsof A=|0 2 -1]|.
1 -1 2

Solution. The characteristic polynomial is (3 — A\)(A? — 4\ + 3), giving eigenvalues \; = 1, A = 3.

2 0 0 0o 0 O
Now consider A; =0 1 -1|and A; =]0 -1 -1|. Solving the coefficient matrix respectively gives the
1 -1 1 1 -1 -1

eigenvectors v; = r(0,1,1) and vy = s(0,1,-1).

1

(a) Show that the characteristic polynomial of A is p(\) = A% — 5\ + 6.

Problem 5: Goode 7.1.34

Consider the matrix A =

(b) Show that A satisfies its characteristic equation. That is, A% - 54 + 615 = 0. (This result is known as

the Cayley-Hamilton Theorem and is true for general n x n matrices.)

() Use the result from (b) to find A~'.

Solution. We solve the problem step by step.

A -1

. 5 1 -1]]1 -1 1 -1 1 0 -1-5+6 -5+5+0 0 0
(b) Consider A< -5A + 615 = -5 +6 = = .
2 41|12 4 2 4 0 1 10-10+0 14-20+6 0 0

(© (AM)(A?2-5A+6I)=A-5I,+6A7! =0. This gives

4 1] 23 e
2 1| |-1/3 1/6]

1-
(@ A-X= l ] The characteristic equation is then det(A - AI) = (1-A)(4-A) +2 = A2 -5\ +6.
2

1 1
At =2 (5L~ A) = -
G- 4)=¢

Problem 6: Goode 7.1.35

1 2
(a) Determine all eigenvalues of A = { ]
2 =2

(b) Reduce A to row-echelon form, and determine the eigenvalues of the resulting matrix. Are these the

same as the eigenvalues of A?
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Solution. We solve the problem step by step.
(a) The characteristic equation is A2 + A - 6 = 0, giving \; = 2, Ay = —3.

1 2 1 2
(b) A~ l ] ~ l ] The characteristic equation is then (1 - \)? = 0, giving A = 1. It is clearly not the
0 -6 0 1

same as the eigenvalues of A.

Problem 7: Goode 7.1.43

Let A be an n x n matrix. Prove that A and A7 have the same eigenvalues.

Proof. It suffices to show that det(A” — \I) = det(A - \I).
From det(A) = det(A”) for all A, we have

det(AT — A1) = det(AT - \I)T
=det((AT)T - AIT)
=det(A - \I).

Problem 8: Goode 7.2.4

1
Determine the multiplicity of each eigenvalue and a basis for each eigenspace of A =

2
. Hence,
-2 5
determine the dimension of each eigenspace and state whether the matrix is defective or nondefective.

Solution. A has a characteristic equation of A2 — 6\ + 9 = 0, giving A = 3 of multiplicity 2. The eigenvector is
v =7(1,1), so the basis for the eigenspace is (1,1). The dimension is 1, hence A is defective.

Problem 9: Goode 7.2.7

4 0 O
Determine the multiplicity of each eigenvalue and a basis for each eigenspace of A=|0 2 -3|. Hence,

0 -2 1
determine the dimension of each eigenspace and state whether the matrix is defective or nondefective.

Solution. A has a characteristic equation of (4 — A)(\? - 3\ —4) = 0, giving A = 4 of multiplicity 2 and A = -1 of

0 0 O

multiplicity 1. Here we check the eigenvalue A =4. A-47 =0 -2 -3|. We then see that rank(A -47) =1,

0 -2 -3
implying that dim(FE) = 2 for A = 4. Geometric multiplicity matches algebraic multiplicity, so A is nondefective.
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Problem 10: Goode 7.2.13

2 2 -1
Determine the multiplicity of each eigenvalue and a basis for each eigenspace of A =2 1 -1|. Hence,

2 3 -1
determine the dimension of each eigenspace and state whether the matrix is defective or nondefective.

Solution. A has a characteristic equation of —-\3 + 2\? = 0, giving A = 0 of multiplicity 2 and A = 2 of multiplicity
2 2 -1 2 2 -1 2 2 -1

1. Here we check the eigenvalue A =0. A=[2 1 -1[~|0 -1 0[~]|0 -1 0. We then see that

2 3 -1 0 1 0 0 0 0
rank(A) = 2, implying that dim(F) = 1 for A = 0. Geometric multiplicity does not match algebraic multiplicity, so

A is defective.

Problem 11: Goode 7.2.19

1 -2
Determine whether A = [ l is defective or nondefective.
5 3

Solution. Consider the characteristic equation A>~4\+13 = 0. As A < 0, we have two distinct imaginary eigenval-

ues, hence two eigenvectors corresponding to each eigenvalue. We can then conclude that A is nondefective.

Problem 12: Goode 7.2.21

-1 2 2
Determine whether A=|-4 5 2] is defective or nondefective.
-4 2 5

Solution. We first know that A has only one eigenvalue A = 3 of multiplicity 3. We start to suspect if A is defective

-4 2 2
or not. We then observe that A-3\=|-4 2 2| whose rank is 1, so the eigenspace is a plane of dimension 2.
-4 2 2

The geometric multiplicity does not match algebraic multiplicity, we can then conclude that A is defective.

Problem 13: Goode 7.2.25

Determine a basis for each eigenspace of A =

3
] and sketch the eigenspaces.
0 2

Solution. We first observe that A = 2 with multiplicity 2. Consequently, the eigenvector is (1,0), so the two-

dimensional space has an eigenspace spanned by the (1,0) vector. On a two-dimensional cartesian spane, the

eigenspace is the line y = 0, as follows:
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1 .
0.5 1
> 0
-0.5
10 5 0 5 10
X
Problem 14: Goode 7.2.33
-1 -2 0
Use the result of problem 32 to determine the sum and the product of the eigenvaluesof A=| 6 -3 -8|.
-2 2 1

Solution. We know from problem 32 that det(A) is the product of the eigenvalues of A, and tr(A) is the sum
of the eigenvalues of A. We have tr(A) = -3, so the eigenvalues sum to -3. We also have det(A4) = -1(13) -
(-2)(-10) = -33, so the eigenvalues have product of -33.

Problem 15: Goode 7.3.3

-7 4
Determine whether A = l ] is diagonizable. Where possible, find a matrix S such that S~*AS =
1

diag()\l, )\2, cey >\n)
Solution. A has an eigenvalue A\ = -3 of multiplicity 2. It then is associated with one eigenvector, and the

eigenspace is then of dimension 1, so A is defective. It follows that A is not diagonizable.

Problem 16: Goode 7.3.4

1
Determine whether A = l
2 -7

] is diagonizable. Where possible, find a matrix S such that S~*AS =

diag(/\l,)\g, 7>\n)

Solution. A has two eigenvalue A = -3 of multiplicity 2. It then is associated with one eigenvector, and the

eigenspace is then of dimension 1, so A is defective. It follows that A is not diagonizable.
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Problem 17: Goode 7.3.10

2 0 0
Determine whether A = [0 1 0| is diagonizable. Where possible, find a matrix S such that S~'AS =
2 -1 1

diag(A1, A2, .-y An)-

Solution. A has an eigenvalue A = -2 of multiplicity 1, and an eigenvalue A = -1 of multiplicity 2. From the
coefficient matrix, the first eigenspace is formed by the intersection of two linearly independent planes, so it is
a line. Similarly, the second eigenspace is also formed by the intersection of two linearly independent planes, so

it is also a line. Geometric multiplicity does not match algebraic multiplicity, so A is not diagonizable.

Problem 18: Goode 7.3.19
Use the ideas introduced in this section to solve the following system of differential equations:

x] =631 — 2w9, ThH =-221 +622.

-2
Solution. Consider =’ = Az, where A = ] The transformed system is 3’ = (S™*AS)y, where x = Sy. To

-2 6
determine S, we need the eigenvalues and eigenvectors. The characteristic polynomial is p(\) = A% — 12\ + 32.

From this we know v = r(1,-1) for A = 4, v = (1,1) for A = 8. We then have a S where S~*AS = diag(4,8), so

o 1 -1|]ecie* crett — cpedt
y; =4y and y4 = 8yo. This gives = = = .
1 1 (]eqpe® cre*t + cpedt




