
MATH 225 Homework 6

Stanley Hong

April 10, 2022

Problem 1: Goode 7.1.3

Verify that λ = 3 and v = (2,1,−1) are an eigenvalue/eigenvector pair for the matrix A =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 −2 −6

−2 2 −5

2 1 8

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Solution. We use the equation Av = λv. Here,

Av =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 −2 −6

−2 2 −5

2 1 8

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2

1

−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

6

3

−3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 3

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2

1

−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Problem 2: Goode 7.1.7

Given that v1 = (1,−2) and v2 = (1,1) are eigenvectors of A =

⎡
⎢
⎢
⎢
⎢
⎣

4 1

2 3

⎤
⎥
⎥
⎥
⎥
⎦

, determine the eigenvalues of A.

Solution. Consider Av = λv. For v1 = (1,−2), Av = (2,−4)⇒ λ1 = 2. For v2 = (1,1), Av = (5,5)⇒ λ2 = 5.

Problem 3: Goode 7.1.18

Determine the eigenvalues and eigenvectors of A =

⎡
⎢
⎢
⎢
⎢
⎣

3 −2

4 −1

⎤
⎥
⎥
⎥
⎥
⎦

.

Solution. The characteristic polynomial is λ2 − 2λ + 5, setting it to zero gives λ1 = 1 + 2i, λ2 = 1 − 2i.

Now consider A1 =

⎡
⎢
⎢
⎢
⎢
⎣

2 − 2i −2

4 −2 − 2i

⎤
⎥
⎥
⎥
⎥
⎦

and A2 =

⎡
⎢
⎢
⎢
⎢
⎣

2 + 2i −2

4 −2 + 2i

⎤
⎥
⎥
⎥
⎥
⎦

. Solving the coefficient matrix respectively gives

the eigenvectors v1 = r(1 + i,2) and v2 = s(1 − i,2).
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Problem 4: Goode 7.1.21

Determine the eigenvalues and eigenvectors of A =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

3 0 0

0 2 −1

1 −1 2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Solution. The characteristic polynomial is (3 − λ)(λ2 − 4λ + 3), giving eigenvalues λ1 = 1, λ2 = 3.

Now consider A1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2 0 0

0 1 −1

1 −1 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and A2 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0

0 −1 −1

1 −1 −1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. Solving the coefficient matrix respectively gives the

eigenvectors v1 = r(0,1,1) and v2 = s(0,1,−1).

Problem 5: Goode 7.1.34

Consider the matrix A =

⎡
⎢
⎢
⎢
⎢
⎣

1 −1

2 4

⎤
⎥
⎥
⎥
⎥
⎦

.

(a) Show that the characteristic polynomial of A is p(λ) = λ2 − 5λ + 6.

(b) Show that A satisfies its characteristic equation. That is, A2 − 5A + 6I2 = 02. (This result is known as

the Cayley-Hamilton Theorem and is true for general n × n matrices.)

(c) Use the result from (b) to find A−1.

Solution. We solve the problem step by step.

(a) A−λI =

⎡
⎢
⎢
⎢
⎢
⎣

1 − λ −1

2 4 − λ

⎤
⎥
⎥
⎥
⎥
⎦

. The characteristic equation is then det(A−λI) = (1−λ)(4−λ)+ 2 = λ2 − 5λ+ 6.

(b) Consider A2 − 5A + 6I2 =

⎡
⎢
⎢
⎢
⎢
⎣

1 −1

2 4

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

1 −1

2 4

⎤
⎥
⎥
⎥
⎥
⎦

− 5

⎡
⎢
⎢
⎢
⎢
⎣

1 −1

2 4

⎤
⎥
⎥
⎥
⎥
⎦

+ 6

⎡
⎢
⎢
⎢
⎢
⎣

1 0

0 1

⎤
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

−1 − 5 + 6 −5 + 5 + 0

10 − 10 + 0 14 − 20 + 6

⎤
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

0 0

0 0

⎤
⎥
⎥
⎥
⎥
⎦

.

(c) (A−1)(A2 − 5A + 6I2) = A − 5I2 + 6A−1 = 0. This gives

A−1
=

1

6
(5I2 −A) =

1

6

⎡
⎢
⎢
⎢
⎢
⎣

4 1

−2 1

⎤
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

2/3 1/6

−1/3 1/6

⎤
⎥
⎥
⎥
⎥
⎦

.

Problem 6: Goode 7.1.35

(a) Determine all eigenvalues of A =

⎡
⎢
⎢
⎢
⎢
⎣

1 2

2 −2

⎤
⎥
⎥
⎥
⎥
⎦

.

(b) Reduce A to row-echelon form, and determine the eigenvalues of the resulting matrix. Are these the

same as the eigenvalues of A?
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Solution. We solve the problem step by step.

(a) The characteristic equation is λ2 + λ − 6 = 0, giving λ1 = 2, λ2 = −3.

(b) A ∼

⎡
⎢
⎢
⎢
⎢
⎣

1 2

0 −6

⎤
⎥
⎥
⎥
⎥
⎦

∼

⎡
⎢
⎢
⎢
⎢
⎣

1 2

0 1

⎤
⎥
⎥
⎥
⎥
⎦

. The characteristic equation is then (1 − λ)2 = 0, giving λ = 1. It is clearly not the

same as the eigenvalues of A.

Problem 7: Goode 7.1.43

Let A be an n × n matrix. Prove that A and AT have the same eigenvalues.

Proof. It suffices to show that det(AT − λI) = det(A − λI).

From det(A) = det(AT ) for all A, we have

det(AT
− λI) = det(AT

− λI)T

= det((AT
)
T
− λIT )

= det(A − λI).

Problem 8: Goode 7.2.4

Determine the multiplicity of each eigenvalue and a basis for each eigenspace of A =

⎡
⎢
⎢
⎢
⎢
⎣

1 2

−2 5

⎤
⎥
⎥
⎥
⎥
⎦

. Hence,

determine the dimension of each eigenspace and state whether the matrix is defective or nondefective.

Solution. A has a characteristic equation of λ2 − 6λ + 9 = 0, giving λ = 3 of multiplicity 2. The eigenvector is

v = r(1,1), so the basis for the eigenspace is (1,1). The dimension is 1, hence A is defective.

Problem 9: Goode 7.2.7

Determine the multiplicity of each eigenvalue and a basis for each eigenspace of A =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

4 0 0

0 2 −3

0 −2 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. Hence,

determine the dimension of each eigenspace and state whether the matrix is defective or nondefective.

Solution. A has a characteristic equation of (4 − λ)(λ2 − 3λ − 4) = 0, giving λ = 4 of multiplicity 2 and λ = −1 of

multiplicity 1. Here we check the eigenvalue λ = 4. A − 4I =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0

0 −2 −3

0 −2 −3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. We then see that rank(A − 4I) = 1,

implying that dim(E) = 2 for λ = 4. Geometric multiplicity matches algebraic multiplicity, so A is nondefective.
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Problem 10: Goode 7.2.13

Determine the multiplicity of each eigenvalue and a basis for each eigenspace of A =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2 2 −1

2 1 −1

2 3 −1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. Hence,

determine the dimension of each eigenspace and state whether the matrix is defective or nondefective.

Solution. A has a characteristic equation of −λ3 + 2λ2 = 0, giving λ = 0 of multiplicity 2 and λ = 2 of multiplicity

1. Here we check the eigenvalue λ = 0. A =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2 2 −1

2 1 −1

2 3 −1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∼

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2 2 −1

0 −1 0

0 1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∼

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2 2 −1

0 −1 0

0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. We then see that

rank(A) = 2, implying that dim(E) = 1 for λ = 0. Geometric multiplicity does not match algebraic multiplicity, so

A is defective.

Problem 11: Goode 7.2.19

Determine whether A =

⎡
⎢
⎢
⎢
⎢
⎣

1 −2

5 3

⎤
⎥
⎥
⎥
⎥
⎦

is defective or nondefective.

Solution. Consider the characteristic equation λ2−4λ+13 = 0. As ∆ < 0, we have two distinct imaginary eigenval-

ues, hence two eigenvectors corresponding to each eigenvalue. We can then conclude that A is nondefective.

Problem 12: Goode 7.2.21

Determine whether A =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1 2 2

−4 5 2

−4 2 5

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

is defective or nondefective.

Solution. We first know that A has only one eigenvalue λ = 3 of multiplicity 3. We start to suspect if A is defective

or not. We then observe that A − 3λ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−4 2 2

−4 2 2

−4 2 2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

whose rank is 1, so the eigenspace is a plane of dimension 2.

The geometric multiplicity does not match algebraic multiplicity, we can then conclude that A is defective.

Problem 13: Goode 7.2.25

Determine a basis for each eigenspace of A =

⎡
⎢
⎢
⎢
⎢
⎣

2 3

0 2

⎤
⎥
⎥
⎥
⎥
⎦

and sketch the eigenspaces.

Solution. We first observe that λ = 2 with multiplicity 2. Consequently, the eigenvector is (1,0), so the two-

dimensional space has an eigenspace spanned by the (1,0) vector. On a two-dimensional cartesian spane, the

eigenspace is the line y = 0, as follows:
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0

0.5

1

x

y

Problem 14: Goode 7.2.33

Use the result of problem 32 to determine the sum and the product of the eigenvalues of A =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1 −2 0

6 −3 −8

−2 2 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Solution. We know from problem 32 that det(A) is the product of the eigenvalues of A, and tr(A) is the sum

of the eigenvalues of A. We have tr(A) = −3, so the eigenvalues sum to -3. We also have det(A) = −1(13) −

(−2)(−10) = −33, so the eigenvalues have product of -33.

Problem 15: Goode 7.3.3

Determine whether A =

⎡
⎢
⎢
⎢
⎢
⎣

−7 4

−4 1

⎤
⎥
⎥
⎥
⎥
⎦

is diagonizable. Where possible, find a matrix S such that S−1AS =

diag(λ1, λ2, ..., λn).

Solution. A has an eigenvalue λ = −3 of multiplicity 2. It then is associated with one eigenvector, and the

eigenspace is then of dimension 1, so A is defective. It follows that A is not diagonizable.

Problem 16: Goode 7.3.4

Determine whether A =

⎡
⎢
⎢
⎢
⎢
⎣

1 −8

2 −7

⎤
⎥
⎥
⎥
⎥
⎦

is diagonizable. Where possible, find a matrix S such that S−1AS =

diag(λ1, λ2, ..., λn).

Solution. A has two eigenvalue λ = −3 of multiplicity 2. It then is associated with one eigenvector, and the

eigenspace is then of dimension 1, so A is defective. It follows that A is not diagonizable.
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Problem 17: Goode 7.3.10

Determine whether A =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2 0 0

0 1 0

2 −1 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

is diagonizable. Where possible, find a matrix S such that S−1AS =

diag(λ1, λ2, ..., λn).

Solution. A has an eigenvalue λ = −2 of multiplicity 1, and an eigenvalue λ = −1 of multiplicity 2. From the

coefficient matrix, the first eigenspace is formed by the intersection of two linearly independent planes, so it is

a line. Similarly, the second eigenspace is also formed by the intersection of two linearly independent planes, so

it is also a line. Geometric multiplicity does not match algebraic multiplicity, so A is not diagonizable.

Problem 18: Goode 7.3.19

Use the ideas introduced in this section to solve the following system of differential equations:

x′1 = 6x1 − 2x2, x′2 = −2x1 + 6x2.

Solution. Consider x′ = Ax, where A =

⎡
⎢
⎢
⎢
⎢
⎣

6 −2

−2 6

⎤
⎥
⎥
⎥
⎥
⎦

. The transformed system is y′ = (S−1AS)y, where x = Sy. To

determine S, we need the eigenvalues and eigenvectors. The characteristic polynomial is p(λ) = λ2 − 12λ + 32.

From this we know v = r(1,−1) for λ = 4, v = (1,1) for λ = 8. We then have a S where S−1AS = diag(4,8), so

y′1 = 4y1 and y′2 = 8y2. This gives x =
⎡
⎢
⎢
⎢
⎢
⎣

1 −1

1 1

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

c1e
4t

c2e
8t

⎤
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

c1e
4t − c2e

8t

c1e
4t + c2e

8t

⎤
⎥
⎥
⎥
⎥
⎦

.
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