
MATH 425b Lecture Notes

Stanley Hong

Spring 2023

Beginning of January 10, 2023

In an usual course of analysis I, we are expected to learn:

• R and C;

• Topology of metric spaces, including open/closed sets, continuity, compactness, etc.

• Sequences, series, and convergence tests of series

• Single-variable calculus

• Uniform convergence, which is particularly important.

And below is a list of what we are going to do this semester. Depending on the progress with analysis I, the first

two sections (power series and improper integrals) may or may not be a review.

• Power series and special functions

• Improper Riemann integral and convex functions

• Function spaces and approximation theory (long-story-short definition: approximating some function that

looks bad with some functions that are better for us to treat)

• Fourier series (if time permits)

• Multivariable calculus: derivative (as a linear transformation), multiple integration, differential forms, and

perhaps the most important concept of multivariable calculus, Stokes’ theorem.

The emphasis of analysis I is on the nuts and bolts of problem solving. When we think of a mathematical

problem, we have a starting point and an ending point, and our goal is to find the logical path that connects the

two. Meanwhile, the problems in analysis II usually involves a higher degree of logical sophistication. This certainly

involves more practice and more sophisticated strategization.
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(Official) beginning of January 10, 2023

Definition. A power series of the variable z in R or C centered at a with coefficients cn for n ∈ N0, takes

the form of
∞
∑
n=0

cn(z − a)n.

The above power series has radius of convergence R of α−1 for 0 < α < ∞, where

α = lim sup
n→∞

n
√

∣cn∣.

Of course, if α = +∞ then R = 0; if α = 0 then R = +∞.

Proposition. Given (cn)∞n=0 in C, and suppose the power series ∑∞
n=0 cn(z − a)n has radius of convergence

R > 0. Then the series converges absolutely when ∣z − a∣ < R and diverges when ∣z − a∣ > R. Additionally, the

series converges uniformly on {z ∶ ∣z − a∣ ⩽ r} for any r ∈ (0,R).

Proof. For the first two parts, we utilize the root test. Consider

n
√

∣cn(z − a)n∣ = ∣z − a∣ n
√

∣cn∣,

where its lim sup has value R−1∣z − a∣. With the root test, we see that the limit superior is less than unity

if ∣z − a∣ < R, and greater than unity if ∣z − a∣ > R. This proves the conditional (absolute) convergence and

divergence. For the last part regarding uniform convergence, we use the Weierstraß’ M -test.

Theorem. The Weierstraß’ M -test: ∑∞
n=0 fn(z) converges uniformly if ∣fn(z)∣ ⩽Mn and ∑∞

n=0Mn < +∞.

Pick a r ∈ (0,R). With ∣cn(z − a)n∣ ⩽ cnrn, we use the root test to obtain

lim sup
n→∞

n
√

∣cnrn∣ = (lim sup
n→∞

n
√

∣cn∣) r =
r

R
< 1,

hence the series converges by the Weierstraß’ M -test.

Remark. Applying the uniform limit theorem to the sequence of partial sums (∑Nn=0 cn(z − a)n)
∞
N=1

, we obtain the

continuity of ∑∞
n=0 cn(z − a)n inside the disc of convergence. Specifically, we can choose an arbitrary point in the

disc of convergence, then there exists a ball where its closure includes the point, and by the last part of the previous

proposition we can then apply the uniform limit theorem to show the continuity of the series at that point.

We now introduce the concept of a Cauchy product. Consider two series f(z) = ∑∞
n=0 anz

n, g(z) = ∑∞
n=0 bnz

n, and

suppose we want to find their "product" ∑∞
n=0 cnz

n. If we simply multiply the power series of f(z)g(z), we get

cn = ∑
k+l=n

akbl =
n

∑
k=0

akbn−k =
n

∑
k=0

an−kbk.

Definition. Given two series ∑∞
n=0 an and ∑∞

n=0 bn, their Cauchy product is

∞
∑
n=0

(
n

∑
k=0

akbn−k) .
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Two questions can be raised regarding the Cauchy product.

• Does the Cauchy product converge? More specifically, what are the conditions for it to converge? (Merten’s)

• If ∑∞
n=0 an = A, ∑∞

n=0 bn = B and ∑∞
n=0 cn = C. Does AB = C hold? In other words, if the Cauchy product

converges, does it have to converge to the product AB? (Able’s)

Example. The first question might seem obvious. Consider

an = bn =
(−1)n√
n + 1

.

The Cauchy product is then ∑∞
n=0 cn, where cn = ∑nk=0 akan−k = (−1)n∑nk=0

1√
(k+1)(n−k+1)

.

In fact, cn ↛ 0, hence ∑∞
n=0 cn must not converge. More to cover next class.

Beginning of January 11, 2023

In the last lecture, we ended up with a counterexample for the convergence of Cauchy product given convergence

of two series. We will continue with that example today.

Example. Consider an = (−1)n√
n+1

. The Cauchy product of ∑∞
n=0 an with itself has terms

cn =
n

∑
k=0

(−1)k√
k + 1

(−1)n−k√
n − k + 1

= (−1)n
n

∑
k=0

1√
k + 1

√
n − k − 1

.

Claim. cn ↛ 0 as n→∞, so the Cauchy product cannot converge.

Proof of claim. Consider the inequality 2ab ⩽ a2+b2. With a =
√
k + 1 and b =

√
n − k + 1, we can conclude

that a2 + b2 = n + 2, and we can construct a nonzero lower bound of ∣cn∣ with

∣cn∣ ⩾
n

∑
k=0

2

n + 2
= 2(n + 1)

n + 2
↛ 0.

Merten’s theorem connects convergence of series and convergence of Cauchy product.

Theorem. (Merten) Suppose ∑∞
n=0 an converges absolutely to A, and ∑∞

n=0 bn converges to B. Then their

Cauchy product converges to C = AB.

Proof. Consider the partial sums, denoted as An = ∑nk=0 ak, Bn = ∑nk=0 bk, Cn = ∑nk=0 ck. We have

Cn = c0 + c1 + ... + cn = a0b0 + (a0b1 + a1b0) + ... + (a0bn + ... + anb0).

Regrouping the terms of Cn gives Cn = a0(b0+...+bn)+a1(b0+...+bn−1)+...+anb0. Setting βn = B−Bn = ∑∞
k=n+1 bk,

Cn = a0(B − βn) + a1(B − βn−1) + ... + an(B − β0) = (a0 + ... + an)B − (a0βn + a1βn−1 + ... + anβ0).

Notice that a0 + ... + an = An, denote the tail as γn and computation gives Cn = AnB − γn. Given An → A, it

suffices to show γn → 0 (then Cn → AB − 0 = AB). Note that this could happen as the terms of γn becomes
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smaller and smaller. We split the expression into two parts to utilize the infinisimality of an and βn:

∣γn∣ =
N

∑
k=0

∣an−kβk ∣ ⩽
N

∑
k=0

∣an−kβk ∣ +
n

∑
k=N+1

∣an−k ∣∣βk ∣ ⩽ max{∣an−N ∣, ..., ∣an∣}
N

∑
k=0

∣βk ∣ +max{∣βN+1∣, ..., ∣βn∣}
n−N−1

∑
k=0

∣ak ∣.

When n→∞, the tail behaviors of βn and an and the boundedness of the finite sums guarantee convergence.

Theorem. (Able) Assume ∑∞
n=0 an = A and ∑∞

n=0 bn = B. Assume also that their Cauchy product ∑∞
n=0 cn =

C. Then AB = C.

To prove the theorem, we need to assume the validity of the lemma. (Which isn’t really easy to prove...)

Lemma. Suppose ∑∞
n=0 an converges. Define f ∶ (−1,1] → C, and f(x) = ∑∞

n=0 anx
n. Then f(1−) = ∑∞

n=0 an.

Proof. Define f(x)∑∞
n=0 anx

n, g(x) = ∑∞
n=0 bnx

n, h(x) = ∑∞
n=0 cnx

n. As h(x) is the Cauchy product of f(x) and

g(x), for x ∈ (−1,1), both series converge absolutely, hence Merten’s theorem implies h(x) = f(x)g(x). Taking

the limit of the expression as x→ 1− gives C = h(1−) = f(1−)g(1−) = AB.

Proof of lemma. Consider each an as the difference of partial sums: an = Sn − Sn−1 (with s−1 = 0.) Then

f(x) =
∞
∑
n=0

(sn − sn−1)xn =
∞
∑
n=0

snx
n −

∞
∑
n=1

sn−1x
n =

∞
∑
n=0

snx
n −

∞
∑
n=0

snx
n+1 =

∞
∑
n=0

snx
n(1 − x).

Note that we actually cheated a bit; we could not guarantee the convergence of the two series (but it could be

proven with some steps.) With sn convergent, it is bounded. More about it in the next lecture.

Beginning of January 13, 2023

Last class we ended with a (rather incomplete) proof of Abel’s theorem. However, we are missing an auxiliary

lemma. Here we complete the work left yesterday.

Lemma. Assuming ∑∞
n=0 an, define f ∶ (−1,1] → C by f(x) = ∑∞

n=0 anx
n. Then f(1−) = f(1).

Proof. Consider each an as the difference of partial sums: an = Sn − Sn−1 (with s−1 = 0.) Then

f(x) =
∞
∑
n=0

(sn − sn−1)xn =
∞
∑
n=0

snx
n −

∞
∑
n=1

sn−1x
n =

∞
∑
n=0

snx
n −

∞
∑
n=0

snx
n+1 =

∞
∑
n=0

snx
n(1 − x).

Note that we actually cheated a bit; we could not guarantee the convergence of the two series (but it could be

proven with some steps.) As we want to investigate the tail behavior ∣f(x) − s∣, take

∞
∑
n=0

an = s = s
1 − x
1 − x

= s(1 − x)
∞
∑
n=0

xn.

Thus,

∣f(x) − s∣ = ∣(1 − x)(
∞
∑
n=0

snx
n − s

∞
∑
n=0

xn)∣ .

Estimating the expression above, we use the method of "splitting the sums" again to bound the expression above

as follows:

∣f(x) − s∣ ⩽ (1 − x) ∣
N

∑
n=0

(∣s∣ +M) + sup
n⩾N+1

∣s − sn∣
∞
∑
n=0

∣x∣n∣ ⩽ (1 − x)(N + 1)(N +M) + sup
n⩾N+1

∣s − sn∣

In part 1, we utilize the fact that the left-hand sum (with terms) snxn is bounded by M , and the right-hand sum

has terms no bigger than 1, hence the expression itself is no larger than ∣s∣. In part 2, we begin with the sum

starting with n = N + 1, but it is surely no greater than the sum starting with n = 0. Beginning with n = 0 allows
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us to eliminate terms. Now we can first set N large enough such that supn⩾N+1∣s − sn∣ < ε
2

(and we can do it

due to the convergent tail behavior of sn.) Then we can choose x close to 1 (using the δ-ε method) such that

(1 − x)(N + 1)(N +M) < ε
2
. Then the upper bound is established and we can conclude the result.

Remark. The best takeaway of the proof above would be the trick of "splitting the sums".

Now we discuss about the double sums. Generally, we are interested in the above question: when is

∞
∑
n=0

∞
∑
m=0

xm,n =
∞
∑
m=0

∞
∑
n=0

xm,n =
∞
∑
l=0

∑
m+n=l

xm,n?

The above three situations are obtained when we take the double sum (which can be represented as a matrix)

via three different ways: horizontally (grouping rows first), vertically (grouping columns first), and diagonally

(grouping diagonals). It should be rather easily believed that the statement doesn’t hold all the time.

Theorem. "If we have absolute convergence, we can reorder things." More specifically, suppose

∑∞
m=0∑

∞
n=0∣xm,n∣ < +∞. Then ∑∞

n=0∑
∞
m=0 xm,n = ∑

∞
m=0∑

∞
n=0 xm,n = ∑

∞
l=0∑

∞
m+n=l xm,n.

Proof. Define ym = ∑∞
n=0∣xm,n∣ (grouping columns) and zn = ∑∞

m=0∣xm,n∣ (grouping rows). By assumption ym ’s

and zn ’s are bounded. Consider additionally a mapping sm ∶ N0 ∪ {+∞} → C defined as sm(N) = ∑Nn=0 xm,n.

Thus (sm)∞m=0 is a sequence (sm)∞m=0 of continuous functions. Note that sm(N) ⩽ ym for all m ∈ N. Then by

Weierstraß’ M -test, ∑∞
m=0 sm(N) → t, which is continuous on positive infinity as well. The continuity gives

t(+∞) = lim
N→∞

t(N) = lim
N→∞

∞
∑
m=0

sm(N) = lim
N→∞

∞
∑
m=0

N

∑
n=0

xm,n =
∞
∑
n=0

∞
∑
m=0

xm,n.

On the other hand, the definition of t implies directly that t(+∞) = ∑∞
m=0∑

∞
n=0 xm,n.

More to cover about the diagonal sums in next lecture.

Beginning of January 18, 2023

We begin today by recalling a theorem from last class regarding exchanging double sums.

Theorem. If ∑∞
n=0∑

∞
m=0∣xm,n∣ < ∞, we have

∞
∑
n=0

∞
∑
m=0

xm,n =
∞
∑
m=0

∞
∑
n=0

xm,n =
∞
∑
l=0

∑
j+k=l

xj,k.

Having proven the first equality in the last lecture, we will attempt to prove the second equality now. Again, we

consider the notation that (ym)∞m=0 = ∑
∞
n=0∣xm,n∣, (zn)∞n=0 = ∑

∞
m=0 an∣xm,n∣.

Proof. Note that for every ε > 0, there exists N ∈ N0 such that ∑m>N ym < ε
2

and ∑n>N zn < ε
2
. Thus for such N ,

∣A −
N

∑
m=0

N

∑
n=0

xm,n∣ ⩽ ∑
m>N

ym + ∑
n>N

zn <
ε

2
+ ε

2
= ε.

(Here A is the desired common limit.) Geometrically, we desire the whole N ×N box to be contained in some

partial sums of diagonals. That is, we want to find a L large such that ∑Ll=0∑j+k=l xj,k includes the N ×N box

of our choice. Note that by choosing such N we already made the terms outside the box "negligibly small". As
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L = 2N would suffice for our needs, we can have the following expression, which is bounded above by ε:

∣
2N

∑
l=0

∑
j+k=l

xj,k −
N

∑
m=0

N

∑
n=0

xm,n∣ ∑
m>N

ym + ∑
n>N

zn < ε.

Here, only the N ×N square contains the terms that do matter. The difference between the two double sums for

large N and large L then tends to zero. This proves the claim.

Now we discuss further on power series and their differentiability, starting with the following proposition.

Proposition. Let (cn)∞n=0 be a sequence in C. Suppose ∑∞
n=0 cnz

n has radius of convergence R > 0. Define

(−R,R) → C by f(x) = ∑∞
n=0 cnx

n. Then,

• ∑∞
n=0 cnx

n converges uniformly to f on [−r, r] for every r ∈ (0,R).

• f is differentiable on (−R,R), with f ′(x) = ∑∞
n=1 ncnx

n−1.

Additionally, the radius of convergence of f ′(x) is also R. (Similar statement holds for f (n)(x).)

Proof. Consider the radius of convergence of ∑∞
n=1 ncnx

n−1 first, which can be obtained with the root test:

lim sup
n→∞

n
√

∣ncn∣ = lim
n→∞

n
√
n ⋅ lim sup

n→∞

n
√

∣cn∣ = 1 ⋅R−1 = R−1.

Regarding the differentiability, first define fN(x) = ∑Nn=0 cnx
n. As the partial sum is finite, we have

f ′N(x) =
N

∑
n=1

ncnx
n−1.

As fN ⇉ f on [−r, r], we know that f ′N ⇉ g, where g(x) = ∑∞
n=1 ncnx

n−1 on the same interval by the differentiable

limit theorem (covered in 425a).

A direct consequence of the above proposition: functions that can be represented by power series are very special.

In particular, f(x) = ∑∞
n=0 cnx

n are infinitely many times differentiable on the interval of convergence. Additionally,

f(x) = c0 + c1x + c2x2 + ...⇒ c0 = f(0), c1 = f ′(0), c2 =
f ′′(0)

2
, c3 =

f ′′′(0)
6

, ...

Generalizing the cn ’s, cn = f (n)(0)/n!. This is the Maclaurin series of f(x) (at x = 0.) More generally, the Taylor

series of f(x) at x = a takes the form of

f(x) =
∞
∑
n=0

f (n)(a)
n!

(x − a)n.

Remark. The power series representation is unique. Specifically, in the radius of convergence, if

∞
∑
n=0

anx
n =

∞
∑
n=0

bnx
n,

then an = bn for all n ∈ N. This can be shown by the fact that ∑∞
n=0(an − bn)xn = 0, hence an − bn = 0(n) = 0.

Remark. Consider the function f(x) = e−1/x2

at x ≠ 0 and 0 if x = 0. We will prove it in a homework exercise that

f (n)(0) = 0 for all n, but f does not have a power series representation centered at zero.

We end today’s class by touching on Taylor’s theorem.
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Definition. Let U and V be open subsets of R or C, with V ⊂ U . Consider a function f ∶ U → C. f is analytic

on V if at every a ∈ V , f has a representation f(z) = ∑∞
n=0 cn(z − a)n on some neighborhood centered at a.

Theorem. (Taylor) Suppose ∑∞
n=0 cnz

n has radius of convergence R > 0. Define f ∶ BC(0,R) → C by

f(z) = ∑∞
n=0 cnz

n. Then for every a ∈ BC(0,R), there exists (dn)∞n=0 such that

z ∈ BC(a,R − ∣a∣) ⇒ f(z) =
∞
∑
n=0

dn(z − a)n.

Beginning of January 20, 2023

Today we will first discuss improper integrals. We have already learned Riemann integrals, which are usually

defined on a compact domain [a, b]. We can generalize the notation to non-compact intervals, which brings up the

definition of locally integrable functions.

Definition.

if I is an interval in R, we let Rloc(I) denote the space of locally integrable functions on I. That is, the set

of those functions f defined in I which are Riemann integrable on every compact subinterval [a, b] ⊂ I.

Definition. If f ∈ Rloc([a,∞)). The improper integral of the first kind is defined by

∫
∞

a
f(x) dx = lim

b→∞∫
b

a
f(x) dx.

If g ∈ Rloc((c, b]), the improper integral of the second kind is defined by

∫
b

c
g(x) dx = lim

a→c+ ∫
b

a
g(x) dx.

Definition. If the improper integral of ∣f ∣ converges, then the integral of f converges absolutely. If f

converges but not absolutely, it converges conditionally.

Remark. Any improper integral of the first kind can be transformed into an improper integral of the second kind,

and vice versa. For example,

∫
∞

a
f(x) dx, x↦ 1

y
⇒ ∫

1
a

0

1

y2
f (y−1) dy.

Definition. If "something goes wrong" at the point c ∈ [a, b] (perhaps it’s unbounded or not included in the

domain,) and we wish to not consider the point c, we can define the improper integral ∫
b
a g(x) dx as

∫
b

a
g(x) dx = ∫

c

a
g(x) dx + ∫

b

c
g(x) dx.

Remark. If f ∈ Rloc(R) and ∫
∞
−∞ f(y) dy converges, then

∫
∞

−∞
f(y) dy = lim

R→∞∫
x+R

x−R
f(y) dy.
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The following lemma is analogous to the comparison test for series of numbers.

Lemma. Assume f ∈ Rloc([a,∞)) is nonnegative. Then

• Either ∫
∞
a f(x) dx converges, or ∫

x
a f(y) dy →∞ as x→ +∞. In particular, the limit exists in R.

• (Integral comparison test) If ∫
∞
a f(x) dx converges and g ∈ Rloc([a,∞)) satisfies ∣g(x)∣ ⩽ f(x) for all x ∈

[a,+∞), then ∫
∞
a g(x) dx converges as well.

Proof of (2). Consider the case where g is nonnegative. Then the limit exists in R by (1). Then convergence of

∫
∞
a f(x) dx implies F (x) = ∫

x
a f(y) dy is bounded above. Then for all x ⩾ a,

0 ⩽ ∫
x

a
g(y) dy ⩽ F (x) ⩽M ⩽ +∞.

Thus the limit limx→∞ ∫
x
a g(y) dy is finite, hence the improper integral converges. Moreover, if g is real-valued

but not necessarily nonnegative, take the positive and negative parts of g and apply the same method.

Corollary. Assume h ∈ Rloc([a,∞)), and assume ∫
∞
a h(x) dx converges absolutely. Then ∫

∞
a h(x) dx

converges.

Proof. Apply the previous lemma with f = ∣h∣ and g = h.

Proposition. Let f be a positive, monotonically decreasing function on [0,+∞). Then form,M ∈ N,m <M ,

we have
M+1

∑
n=m+1

f(n) ⩽ ∫
M

m
f(x) dx ⩽

M

∑
n=m

f(n).

Consequently, the integral ∫
∞

0 f(x) dx converges if and only if ∑∞
n=0 f(n) does.

Proof. f(n + 1) ⩽ ∫
n+1
n f(x) dx ⩽ f(n) as f is monotonically decreasing. Summing over n from m to M proves

the statement directly.

Note that the previous proposition is only useful for proving absolute convergence. To show conditional conver-

gence, consider the following theorem.

Theorem. Let f ∶ [a,∞) → R be continuous and let g ∶ [a,∞) → R be continuously differentiable. Assume

additionally that F (x) ∶= ∫
x
a f(y) dy is bounded on [a,∞), g(x) → 0 as x →∞, and ∫

∞
a ∣g′(y)∣ dy converges.

Then ∫
∞
a f(x)g(x) dx converges.

Proof. We utilize the integration by parts formula.

∫
b

a
f(x)g(x) dx = ∫

b

a
F ′(x)g(x) dx = F (b)g(b) − F (a)g(a) − ∫

b

a
F (x)g′(x) dx.

Since limb→∞ g(b) = 0 and F is bounded, the first term F (b)g(b) tends to zero. Furthermore, F (a) = 0 so the

second term is zero. To show that ∫
∞
a F (x)g′(x) dx converges, let ∣F ∣ be bounded by B. Thus ∣F (x)g′(x)∣ ⩽

B∣g′(x)∣. Since ∫
∞
a ∣g′(x)∣ dx converges, ∫

∞
a F (x)g′(x) dx converges as well.
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Corollary. Assume g ∶ [a,+∞) → R nonnegative, g(x) monotonically decreasing to zero. Assume also that

g is continuously differentiable. Then ∫
∞
a g(x) sinx dx and ∫

∞
a g(x) cosx dx both converge.

Proof. Apply the previous theorem with f(x) = sinx or g(x) = cosx. Note that as g is monotonically decreasing,

∫
b

a
∣g′(x)∣ dx = −∫

b

a
g′(x) dx = g(a) − g(b) → g(a).

Beginning of January 23, 2023

Today we will continue our discussion of improper integrals before finishing our proof on Taylor’s theorem, discussed

last Wednesday. Last Friday we noted that series and improper integrals have many similarities. However, there

also exist differences. Namely, the convergence of ∫
∞
a f(x) dx does not imply f(x) → 0.

Example. ∫
∞

1 cos(x2) dx converges, but limx→∞ cos(x2) ↛ 0.

We will throw a new concept in: the indicator function.

Definition. The indicator function of a set A is defined by

IA(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1, x ∈ A;

0, x ∉ A.

Example. Consider the case where

f(x) =
∞
∑
k=1

I[k− 1
2k2 ,k+ 1

2k2 ](x)
√
k.

Then f(k) → ∞ for k ∈ N, k →∞ (the function is actually unbounded), yet

∫
∞

0
∣f(x)∣ dx = ∫

∞

0
f(x) dx =

∞
∑
k=1
∫

k+ 1
2k2

k− 1
2k2

√
k dx =

∞
∑
k=1

k−3/2 < +∞.

The series converges absolutely but f is unbounded!

Now we go back to discuss Taylor’s theorem. Recall that f is analytic in V if it admits a power series representation

with radius of convergence R > 0 centered at any point a ∈ V . With this definition, we have Taylor’s theorem as

follows:

Theorem. (Taylor) Suppose ∑∞
n=0 cnz

n has radius of convergence R > 0. Define f ∶ BC(0,R) → C by

f(z) = ∑∞
n=0 cnz

n. Then for every a ∈ BC(0,R), there exists a sequence dn such that f(z) = dn(z − a)n

whenever ∣z − a∣ < R − ∣a∣.

9



Proof. We start our proof by noting that

f(z) =
∞
∑
n=0

cnz
n =

∞
∑
n=0

cn((z − a) + a)n =
∞
∑
n=0

cn (
n

∑
k=0

(n
k
)(z − a)kan−k) =

∞
∑
n=0

n

∑
k=0

cn(
n

k
)(z − a)kan−k.

Here we wish to change the order of the double sums. Assuming validity of change in order,

∞
∑
k=0

∞
∑
n=k

cn(
n

k
)an−k(z − a)k.

Here treating the blue part as dk gives us a new power series approximation.

Now it suffices to show that ∑∞
n=0∑

n
k=0∣cn(

n
k
)(z − a)kan−k ∣ is finite. Regarding this, we have

∞
∑
n=0

n

∑
k=0

∣cn(
n

k
)(z − a)kan−k ∣ ⩽

∞
∑
n=0

n

∑
k=0

∣cn∣(
n

k
)∣z − a∣k ∣a∣n−k

=
∞
∑
n=0

∣cn∣(∣z − a∣ + ∣a∣)n.

With ∣z −a∣ + ∣a∣ < R, the infinite series converges (absolutely), so we can justify the change of order of sums.

For the sake of completeness, we touch on some special functions that are defined based on the power series.

Definition. The exponential function exp ∶ C→ C is defined by the power series as

exp(z) =
∞
∑
n=0

zn

n!
.

Based on the definition of exponential, we then have the definition of the sine function and the cosine function:

Definition. The sine function sin ∶ C→ C and the cosine function cos ∶ C→ C are defined as

sin z = 1

2i
[exp(iz) − exp(−iz)] , cos(z) = 1

2
[exp(iz) + exp(−iz)] .

Example. exp z = exp z. This is equivalent to ∑∞
n=0

(z)n
n!

?= ∑∞
n=0

zn

n!
. Using the (uniform) continuity of the

complex mapping z ↦ z, defining f(z) = z and applying limits give

∞
∑
n=0

zn

n!
= lim
N→∞

N

∑
n=0

zn

n!
= lim
N→∞

f (
N

∑
n=0

zn

n!
) = f ( lim

N→∞

zn

n!
) = exp z.

Example. sin z = Im(exp(iz)) and cos z = Re(exp(iz)) if z ∈ R.

Remark. From the above example we have

eiθ = cis(θ) = cos θ + i sin θ.

We end the class with a calculation.

10



Proposition.

exp(z +w) = exp(z) exp(w).

Proof.

exp(z +w) =
∞
∑
n=0

(z +w)n

n!

=
∞
∑
n=0

n

∑
k=0

zkwn−k

k!(n − k)!

=
∞
∑
n=0

zn

n!

∞
∑
m=0

wm

m!
= exp(z) exp(w).

Beginning of January 25, 2023

Today we will talk about convex functions.

Definition. Given a real vector space V (here we consider Rn), a subset E ⊂ V is convex if whenever

a, b ∈ E and λ ∈ [0,1], we have λa + (1 − λ)b ∈ E as well. λa + (1 − λb) is the convex combination of a and b.

A function f ∶ E → R is convex if its epigraph epi(f) = {(x, y) ∶ y ⩾ f(x)} is a convex subset of V ×R. (Here

x can be a vector - it need not be in R.)

Proposition. f ∶ E → R is convex if and only if for every a, b ∈ E and for every λ ∈ [0,1], f(λa + (1 − λb) ⩽
λf(a) + (1 − λ)f(b).

We will restrict attention to functions defined on an intevral (α,β) ⊂ R.

Lemma. Let f ∶ (α,β) → R be a convex function, α < a < b < c < β. Then

f(b) − f(a)
b − a

⩽ f(c) − f(a)
c − a

⩽ f(c) − f(b)
c − b

.

Proof. Let b = λa + (1 − λ)c for some λ ∈ (0,1). Thus

f(b) = f(λa + (1 − λ)c) ⩽ λf(a) + (1 − λ)f(c).

Subtracting f(a) from the expression gives

f(b) − f(a) ⩽ (λ − 1)f(a) + (1 − λ)f(c) = (1 − λ)(f(c) − f(a)).

At last,
f(b) − f(a)

b − a
⩽ (1 − λ)(f(c) − f(a))

(1 − λ)(c − a)
.

Here we used the fact that b = λa + (1 − λ)c = (1 − λ)(c − a).

Lemma. Let f ∶ (α,β) → R be a function. If

f(b) − f(a)
b − a

⩽ f(c) − f(b)
c − b

whenever α < a < b < c < β, then f is convex.

11



Remark. This is essentially the converse of the previous lemma.

Proof. We want to show that for every a, c ∈ (α,β), (WLOG let a < c,) f(λa + (1 − λ)c) ⩽ λf(a) + (1 − λ)f(c).
Choosing b = λa + (1 − λ)c, there exists γ ∈ R such that

f(b) − f(a)
b − a

⩽ γ ⩽ f(c) − f(b)
c − b

.

From the first inequality, we have f(b) ⩽ f(a) + γ(b− a); from the second inequality, f(b) ⩽ f(c) − γ(c− b). Thus

f(b) ⩽ λf(a) + (1 − λ)f(c) + γ [λ(b − a) − (1 − λ)(c − b)].

As the blue part is λ(b − a) − (1 − λ)(c − b) = (λ + (1 − λ))b − (λa + (1 − λ)c) = 0, essentially

f(b) ⩽ λf(a) + (1 − λ)f(c),

which suffices to show that f is convex.

Introducing a new concept: Lipschitz functions. The concept of Lipschitz may or may not be completely new; (it in

fact did appear on Prof. Leslie’s Midterm 2 for 425a.) But anyways... Here it is, the more formal definition.

Definition. A function f ∶ E → R is Lipschitz if there exists L > 0 such that for every x, y ∈ E,

∣f(x) − f(y)∣ ⩽ L(∣x − y∣.

f ∶ E → R is locally Lipschitz of f ∣K is Lipschitz for any compact K ⊂ E.

Remark. f ∈ C1 if f is continuously differentiable.

Remark. A couple of remarks in order:

• f ∈ C1(E) ⇒ f ∈ Liploc(E) ⇏ f ∈ Lip(E).

• f ∈ Lip(E) ⇒ f is uniformly continuous.

• f ∈ Lip(E) ⇏ f is differentiable. (However, it is differentiable almost everywhere.)

We end today with a sketch of a proposition.

Proposition. If f ∶ (α,β) → R is convex, then f ∈ Liploc((α,β)).

We give a brief sketch of the proof: choose K ⊂ (α,β) compact. Then our goal is to show that ∣ f(y)−f(x)
y−x ∣ ⩽ L. More

to cover in the next lecture.

Beginning of January 27, 2023

In the last lecture, we discussed convex functions - functions with a convex epigraph (the region above the graph).

We also discussed that convex combinations satisfy

f(λa + (1 − λ)b) ⩽ λf(a) + (1 − λ)f(b),

where the equality holds when f is linear. Additionally, the secant line between a and b has a lower slope than the

secant line between c and d (for a < b < c < d in domain.)

12



Also recall that Lipschitz functions obey the following inequality:

∣f(x) − f(y)∣ ⩽ L(x, y)

for some L > 0 for all x, y in the domain. The function is locally Lipschitz if f is Lipschitz on any compact set.

Corollary. If f ∶ (α,β) → R is convex, it is locally Lipschitz.

Proof. Given K compact and K ⊂ (α,β), it suffices to show that for all x, y ∈K, there exists LK such that

∣f(x) − f(y)∣ ⩽ LK ∣x − y∣ .

Choose a, b, c, d ∈ (α,β) such that a < b < inf K < supK < c < d. Then, for all x, y ∈K and x < y (WLOG),

f(b) − f(a)
b − a

⩽ f(y) − f(x)
y − x

⩽ f(d) − f(c)
d − c

.

Thus

LK = max{∣f(b) − f(a)
b − a

∣ , ∣f(d) − f(c)
d − c

∣} ⇒ ∣f(y) − f(x)
y − x

∣ ⩽ LK .

Proposition. If f ∶ (α,β) → R is differentiable, then f is convex if and only if f ′ is nondecreasing.

Proof. (⇒) Assume f is convex. Then WLOG choose x < y; from the convexity of f we have, for some h > 0,

f(x) − f(x − h)
h

⩽ f(y + h) − f(y)
h

.

As differentiability of f is assumed, taking h→ 0 gives f ′(x) ⩽ f ′(y).
(⇐) Assume f ′ is nondecreasing. Choose p and q arbitrarily. By the mean value theorem, there exists a, b, c ∈
(α,β) such that

f ′(p) = f(b) − f(a)
b − a

, f ′(q) = f(c) − f(b)
c − b

, f ′(p) ⩽ f ′(q).

As p and q are arbitrary, the proof is done.

We now try to apply convexity in three inequalities: Young, Hölder, and Minkowski.

Theorem. (Young) Let a, b > 0, λ ∈ (0,1), p = λ−1 and q = (1 − λ)−1 (p and q are Hölder conjugates.) Then

ab ⩽ a
p

p
+ b

q

q
.

Proof.

ab = exp(log ab)

= exp(log a + log b)

= exp (p−1 log ap + q−1 log bq)

⩽ λ exp(log ap) + (1 − λ) exp(log bq)

= a
p

p
+ b

q

q
.
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Convexity is used in the inequality step; note that p−1 = λ and q−1 = 1 − λ.

Theorem. (Hölder) Let f, g ∈ Rloc(R); p and q are Hölder conjugates. Then, (proof as exercise,)

∫
R
f(x)g(x) dx ⩽ (∫

R
∣f(x)∣p dx)

1
p

(∫
R
∣g(x)∣q dx)

1
q

= ∥f∥p ∥g∥q .

We will later learn that (∫R ∣f(x)∣p dx)
1
p is the Lp norm of f . The following theorem shows that this is indeed a

norm. In other words, the triangle inequality is satisfied.

Theorem. (Minkowski) Let f ∈ Rloc(R) and p > 1. Then

∥f + g∥p ⩽ ∥f∥p + ∥g∥p .

In more humane (as of now) notations,

(∫
R
∣f(x) + g(x)∣p dx)

1
p

⩽ (∫
R
∣f(x)∣p dx)

1
p

+ (∫
R
∣g(x)∣p dx)

1
p

Proof. Consider ∥f + g∥pp first. First consider the triangular inequality ∣f + g∣ ⩽ ∣f ∣ + ∣g∣. This way,

I = ∫
R
∣f(x) + g(x)∣p dx ⩽ ∫

∞

−∞
(∣f(x)∣ + ∣g(x)∣) ∣f(x) + g(x)∣p−1

dx

= ∫
R
∣f(x)∣ ∣f(x) + g(x)∣p−1

dx + ∫
R
∣g(x)∣ ∣f(x) + g(x)∣p−1

dx.

By Hölder’s,

I ⩽ (∫
R
∣f(x)∣p dx)

1
p

(∫
R
∣f(x) + g(x)∣p dx)

p−1
p

+ (∫
R
∣q(x)∣p dx)

1
p

(∫
R
∣f(x) + g(x)∣p dx)

p−1
p

Thus

I = ∫
R
∣f(x) + g(x)∣p dx ⩽ [(∫

R
∣f(x)∣p dx)

1
p

+ (∫
R
∣g(x)∣p dx)

1
p

](∫
R
∣f(x) + g(x)∣p dx)

p−1
p

.

Simplification gives the desired result.

Lastly, we talk a bit about log-convexity.

Definition. f ∶ (α,β) → (0,∞) is log-convex if log ○f is convex.

A couple remarks are in order.

Remark. It is (to be proven as an exercise) true that log-convex implies convex.

Remark. Perhaps the least log-convex function is the exponential function; log(exp(x)) = x (which is the least

convex function.)

Proposition. If f(α,β) → (0,∞) is log-convex, then, (proof as exercise,)

f(λa + (1 − λ)b) ⩽ f(a)λf(b)1−λ.
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Beginning of January 30, 2023

Today we will discuss about the Gamma function. The Gamma function provides an extension of n→ n! to (0,∞).
If we are to extend the factorial function in a meaningful way, we must consider the following two properties:

• (Γ1) Γ(x + 1) = xΓ(x),

• (Γ2) Γ(1) = 1.

It turns out that there are many extensions satisfying (Γ1) and (Γ2). Adding one additional constraint makes the

function unique.

• (Γ3) Γ is log-convex.

It makes natural sense; considering the log of the factorial function,

log((n + 1)!) − log(n!)
(n + 1) − n

= log((n + 1)!
n!

) = log(n + 1),

an increasing function.

Theorem. There exists at most one f ∶ (0,∞) → R satisfying (Γ1) − (Γ3).

Proof. Let’s assume first that some f satisfies (Γ1) − (Γ3). To include the log-convexity, it is better to consider

ϕ = log f ; it then suffices to show the convexity of ϕ. Considering f(n + 1) = n!, ϕ(n + 1) = logn!, and the

convexity of f guarantees

logn ⩽ ϕ(n + 1 + x) − ϕ(n + 1)
x

⩽ log(n + 1) ⇒ 0 ⩽ ϕ(n + 1 + x) − ϕ(n + 1) − x logn ⩽ x log (n + 1

n
) .

Noting ϕ(n + 1) = log(n!), the inequality becomes

0 ⩽ ϕ(n + 1 + x) − log (n!nx) ⩽ x log (1 + n−1) .

Consider ϕ(n + 1 + x), which has the form

ϕ(n+1+x) = log(f(n+1+x)) = log((n+x)f(n+x)) = ... = log((n+x)(n−1+x)...(1+x)xf(x)) = ϕ(x)+log(x(1+x)...(n+x)).

With such expansion in mind, we can rewrite the equation as

0 ⩽ ϕ(x) − log( n!nx

x + (1 + x)...(n + x)
) ⩽ x log (1 + n−1) .

Subsequently,

ϕ(x) = lim
n→∞

log( n!nx

x(1 + x)...(n + x)
) .

Here f(x) would now be defined on (0,1); however, (Γ1) and (Γ2) guarantees that as long as f is defined on

(0,1] it would be defined on R+. This finishes the proof.

Definition. The gamma function Γ ∶ (0,∞) → R is defined by

Γ(x) = ∫
∞

0
tx−1e−t dt.
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Proposition. Γ satisfies (Γ1) − (Γ3).

Proof. First consider

xΓ(x) = ∫
∞

0
xtx−1e−t dt = ∫

∞

0
txe−t dt = Γ(x + 1).

This satisfies (Γ1). For (Γ2), Γ(1) = ∫
∞

0 t0e−t dt = 1. (Γ3) is left as homework.

We will end the section with Stirling’s formula. The formula itself doesn’t need great attention, but it’s useful to

know nevertheless.

Theorem. (Stirling)

lim
x→+∞

Γ(x + 1)
(x
e
)x

√
2πx

= 1.

Corollary. For large x,

Γ(x + 1) ≈ (x
e
)
x√

2πx.

That wraps up chapter 2 (of the lecture notes.) In the next chapter, we will deal with vector spaces and some of

their properties. The following content may (or may not) be review. Here we will predefine a field F (F = R or

F = C for the scope of this course.)

Definition. A vector space over F , a F -vector space, is a set V with two operations:

• Addition V × V → V ,

• Multiplication by scalars F × V → V .

Operations in the F -vector space must satisfy commutative and associative properties of addition, associative

and distributive properties of multiplication (in both ways - scalar multiple and vector), and the existence of

an additive identity (the "zero") and a multiplicative identity (the "one").

Definition. A subspace W of an F -vector space is a subset W ⊂ V which is itself a F -vector space.

Remark. We only need to check that W is closed under addition and scalar multiplication.

Example. Fn = F × F × ... × F is an F -vector space.

Definition. Consider a F -vector space V , and S ⊂ V . A linear combination of elements of S is a sum
n

∑
i=1

civi, ci ∈ F, vi ∈ S, i ≠ j ⇒ vi ≠ vj .

A linear combination is trivial if all the ci ’s are zero; otherwise it is nontrivial.

S is linearly dependent if there exists a nontrivial linear combination such that ∑ni=1 civi = 0. Otherwise, S is

linearly independent. The span of S, denoted span(S), is the set of all linear combinations of S.
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Definition. S is a (Hamel) basis for V if for every v ∈ V there exists a unique finite linear combination of

elements of S which is equal to v.

A couple remarks in order, recalling from concepts of linear algebra, namely the invertible matrix theorem.

Remark. S is a Hamel basis if and only if S spans V and S is linearly independent.

Remark. If S is a basis for V and S is finite, V is finite-dimensional with dimV = #S. Otherwise, V is infinite-

dimensional.

Remark. Suppose V is an n-dimensional F -vector space, n ∈ N. Then

• any n-tuple of linear independent elements of V is a basis for V ,

• any n-tuple in V that spans V is a basis for V ,

• any basis for V consists of n elements of V .

Definition. If B = (v1, ..., vn) is a basis for an F -vector space V , then for LB ∶ V → Fn,

LB [c1v1 + ... + cnvn] = (c1, ..., cn)

is the coordinate map associated to B.

Beginning of February 1, 2023

A reminder of last lecture: given a field (F,+F , ⋅F ), a vector space over F , or an F -vector space, is a pair (V,+V , ⋅V )
such that V is closed under addition +V ∶ V × V → V and scalar multiplication ⋅V ∶ F × V → V and is compatible

with the field operations in F .

In order to do analysis on vector spaces, we need a topology; and the most common way to introduce a topology is

by introducing a norm, measuring the size of an element in a vector space.

Definition. Let V be an F -vector space. A seminorm on V is a function ∥⋅∥ ∶ V → [0,∞) such that

• ∥v∥ ⩾ 0 for all v ∈ V ,

• ∥αv∥ = ∣α∣ ∥v∥ for all α ∈ F and v ∈ V ,

• (Triangle inequality) ∥u + v∥ ⩽ ∥u∥ + ∥v∥ for all u, v ∈ V .

Additionally, a norm on V is a seninorm such that

• ∥v∥ = 0 if and only if v = 0.
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Example. Consider Fn = F × ... × F , where F = R or C. The Euclidean norm is defined by

∥(x1, ..., xn)∥ =
√

∣x1∣2 + ... + ∥xn∥2
.

Meanwhile, the "square" norm, or the uniform norm, is defined by

∥(x1, ..., xn)∥u = max
1⩽j⩽n

∣xj ∣ .

Example. Consider FX , the set of functions f ∶X → F . Let

B(X;F ) = {f ∈ FX , f bounded} .

The uniform norm ∥⋅∥u ∶ B(X;F ) → [0,∞) is defined by

∥f∥u = sup
x∈X

∥f(x)∥ .

When X = [n], the uniform norm is exactly the one above.

Remark. For B(x;F ) under the uniform norm where X = [a, b] and F = R, B(f, ε) is an ε-tube around f . Thus,

∥f − g∥u < ε⇒ sup
x∈[a,b]

∣f(x) − g(x) < ε∣ .

Remark. If f is bounded, we can define ∥f∥u = +∞, even though f ∉ B(X;F ). Hence

∥⋅∥u ∶ F
X → [0,+∞], B(X;F ) = {f ∈ FX ∶ ∥f∥u < +∞} .

In 425a, we knew that every normed vector space can be thought of as a metric space. Hence, we can consider the

properties like convergence and continuity.

Proposition. In any normed F -vector space (V, ∥⋅∥), the following functions are continuous:

• Translation: f ∶ (V, ∥⋅∥) → (V, ∥cdot∥) defined by f(v) = v + v0,

• Multiplication by scalars: g ∶ (V, ∥cdot∥) → (V, ∥cdot∥) defined by g(v) = αv,

• Taking the norm: h ∶ (V, ∥⋅∥) → [0,∞) defined by h(v) = ∥v∥.

In general, f and g are homeomorphisms. They are:

• bijective,

• continuous,

• and they have continuous inverses.

There are useful vector spaces that are not Rn, but they are essentially isomorphic to Rn. Consider the following.
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Example. Suppose V ⊂ B([0,2π];R),

V = span ({sin(nx), cos(nx)}Nn=1 ∪ {1}) .

V has basis B = (1, sinx, cosx, ..., cosNx, sinNx); it has dimension dimV = 2N + 1.

Proposition. Let V be an n-dimensional F -vector space. Assume B = (v1, ..., vn) is a basis for V , ∥⋅∥V is a

norm on V , and LB ∶ V → Fn is the coordinate map LB(c1v1 + ... + cnvn) = (c1, ..., cn). Then

∥⋅∥a ∶ F
n → [0,∞) = ∥(c1, ..., cn)∥a = ∥L−1

B (c1, ..., cn)∥V

is a norm on Fn, and

LB ∶ (V, ∥⋅∥V ) → (Fn, ∥⋅∥a)

is an isometry and therefore a homeomorphism.

We now define Banach spaces.

Definition. Let (V, ∥⋅∥) be a normed F -vector space. If (V, ∥⋅∥) is complete, then (V, ∥⋅∥) is a Banach space.

Remark. Note that a set is complete if every Cauchy sequence in it converges.

We give some examples. Define a space of functions with a metric space (X,d) and F = R or C.

Definition.

• C(X;F ) is the set of continuous functions f ∶X → F .

• BC(X;F ) is the set of bounded continuous functions. That is, BC(X;F ) = C(X;F ) ∩B(X;F ).

• CC(X;F ) is the set of compactly supported continuous functions on X.

Remark. We define the support of f by

supp(f) = ClX {x ∈X ∶ f(x) ≠ 0} .

f is compactly supported if supp(f) is compact.

Additionally, we always equip subspaces of B(X;F ) with ∥⋅∥u. However, this is not the only possible norm.

Remark. (BC(X;F ), ∥⋅∥u) is a Banach space for F = R or F = C. This can be proven using the completeness of R

and the uniform limit theorem.

Example. The Lp norm is an alternative to the uniform norm. On C([a, b]),

∥f∥Lp = (∫
b

a
∣f(x)∣p dx)

1
p

, p ∈ [1,∞).
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Beginning of February 3, 2023

Last time, we talked about normed vector spaces and function spaces. Sometimes it might be helpful to define more

than one norm on the same vector space. In fact, we are able to compare the two norms by equivalency.

Definition. ∥⋅∥a and ∥⋅∥b are equivalent, denoted ∥⋅∥a ∼ ∥⋅∥b, if there exists c,C > 0 such that for all v ∈ V ,

c ∥v∥b ⩽ ∥v∥a ⩽ C ∥v∥b .

∥⋅∥a is strictly weaker than ∥⋅∥b if ∥⋅∥a ≁ ∥⋅∥b, but there exists C > 0 such that for all v ∈ V ,

∥v∥a ⩽ C ∥v∥b .

∥⋅∥a and ∥⋅∥b are comparable if they are either equivalent, or one is strictly weaker than the other.

Example. In Fn, the Euclidean norm and the uniform norm are equivalent. Consider x = (x1, ..., xn). By

the uniform norm, ∥xj∥ = maxi∈[n] ∥xi∥ = ∥x∥u. Note that for some j ∈ [n] where ∥x∥u is defined upon,

∥x∥u =
√

∣xj ∣2 ⩽
√

∣x1∣2 + ... + ∣xn∣2 = ∥x∥ ⩽
√
n ∣xj ∣2 =

√
n ∥x∥u .

Example. In the space C1([a, b]), consider ∥f∥C1 = ∥f∥u + ∥f ′∥u. We know that ∥f∥u ⩽ ∥f∥C1 . We claim

that ∥⋅∥C1 is strictly stronger. It suffices to show that there is no C such that ∥f∥C1 ⩽ C ∥f∥u. Proving by

contradiction, choose C > 0 and suppose ∥f∥C1 ⩽ C ∥f∥u. As the C1 norm encodes information not presented

by the uniform norm - the derivative - it now suffices to find a function that oscillates fast yet has small

amplitude. Pick f(x) = sin(n(x − a)) and let n > C. Then f ′(a) = n > C, contradicting with the assumption.

Theorem. Let V be an F -vector space, and let ∥⋅∥a and ∥⋅∥b be two norms on V . Let Ta and Tb denote the

associated topologies. The following are equal:

(1) b-norm is stronger than a-norm: ∥v∥a ⩽ C ∥v∥b for some C > 0 for all v ∈ V .

(2) Ba(0,1) is open in (V, ∥⋅∥b).

(3) There exists r > 0 such that Bb(0, r) ⊂ Ba(0,1).

(4) Ta ⊂ Tb.

(5) If (vi)∞i=1 is a sequence that converges in (V, ∥⋅∥a), then it also converges in (V, ∥⋅∥b).

(6) id ∶ (V, ∥⋅∥a) → (V, ∥⋅∥b) is continuous.

(7) v ↦ ∥v∥a is continuous on (V, ∥⋅∥b) → [0,∞).

Corollary. ∥⋅∥a ∼ ∥⋅∥b if and only if Ta = Tb.
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Proof: (1) implies (2). Assume ∥v∥a ⩽ C ∥v∥b. Consider an arbitrary point x ∈ Ba(0,1), we attempt to show that

there exists a neighborhood defined on the b-norm that is also included in the a-ball. Consider first r = 1 − ∥x∥a,

which implies Ba(x, r) ⊂ Ba(0,1). By assumption,

Ba(x, r) = {y ∶ ∥y − x∥a < r} ⊃ {y ∶ ∥y − x∥b < rC
−1} = Bb(x, rC−1).

Thus Bb(x, rC−1) is a neighborhood contained in Ba(0,1). As the choice of x is arbitrary, each x ∈ Ba(0,1) is an

interior point under the b-norm, hence Ba(0,1) is open.

Proof: (2) implies (3). IfBa(0,1) is open in (V, ∥⋅∥a), considering zero is an interior point ofBa(0,1) with respect

to ∥⋅∥b, we are automatically done.

Proof: (3) implies (1). Suppose Bb(0, r) ⊂ Ba(0,1), i.e., ∥v∥b < r ⇒ ∥v∥a < 1. Choose v ∈ V / {0}, and define

w = v
∥v∥b

r
1+δ for some δ > 0. As δ → 0, w → r−, thus w ∈ Bb(0, r) ⊂ Ba(0,1). Knowing that ∥w∥a < 1, this implies

∥v∥a
∥v∥b

⋅ r

1 + δ
⩽ 1⇒ ∥v∥a ⩽

1 + δ
r

∥v∥b .

Letting δ → 0 gives C = r−1.

Proof: (2) implies (4). Assume Ba(0,1) is open in (V, ∥⋅∥b). From this we know that Ba(0,1) ∈ Tb, which implies

Ba(x, r) ∈ Tb (by scalar expansion/contraction and/or translation). As any arbitrary balls in Ta is also an element

of Tb, any arbitrary open sets, in terms of unions of open balls, also belong to Tb.

Beginning of February 6, 2023

In the last lecture, we showed that 1⇒ 2⇒ 3⇒ 1, and 2⇒ 4. Today we prove the other few.

Proof: (4) implies (5). Assume Ta ⊂ Tb. Let (vi)∞i=1 be a sequence that converges to v in (V, ∥⋅∥b). Let U be an

open set in (V, ∥⋅∥a) that contains v. U ∈ Ta ⊂ Tb. Therefore there exists N ∈ N such that n ⩾ N ⇒ vn ∈ U . Since

U is an arbitrary set in Ta, we are essentially done.

Proof: (5) implies (6). Here we consider the sequential characterization of continuity. Wanting to show vn → v

in (V, ∥⋅∥b) implies id(vn) → id(v) in (V, ∥⋅∥a), we are automatically done by (5).

Proof: (6) implies (7). Consider

v∥⋅∥b
id↦ v∥⋅∥a ↦ ∥v∥a .

The following composition v ↦ ∥v∥a is a composition of continuous functions, hence is continuous.

(7) implies (2). Assume (7) holds; then f ∶ (V, ∥⋅∥b) → [0,∞) defined by f(v) = ∥v∥a is a continuous mapping.

Therefore, Ba(0,1) = f−1([0,1)) is the pre-image of an open set in [0,∞), hence is also open.

We have equipped ourselves with sufficient tools to tackle the problem of norm equivalencies in finite-dimensional

real or complex vector spaces. This is our next goal.
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Theorem. All norms are equivalent on any finite-dimensional real or complex vector space V .

Proof. It suffices to consider the case V = Fn where F = R or C. Indeed, suppose this case is proven, consider

W be an n-dimensional F -vector space with basis (w1, ...,wn). Then let ∥⋅∥Wa
and ∥⋅∥Wb

be two norms on W .

Define norms ∥⋅∥a and ∥⋅∥b on Fn by

∥(c1, ..., cn)∥a = ∥c1w1 + ... + cnwn∥Wa, ∥(c1, ..., cn)∥b = ∥c1w1 + ... + cnwn∥Wb
.

As ∥⋅∥a and ∥⋅∥b are equivalent by assumption, ∥⋅∥Wa
and ∥⋅∥Wb

are equivalent as well.

Now it is left to prove that any α-norm ∥⋅∥α on Fn is equivalent to ∥⋅∥.

Proof. It suffices to show the existence of c,C > 0 such that

c ∥v∥
(∗)
⩽ ∥v∥α

(∗∗)
⩽ C ∥v∥u

(∗) Let (e1, ..., en) denote the standard basis. Then for v ∈ V ,

∥v∥α = ∥
n

∑
i=1

viei∥
α

⩽
n

∑
i=1

∣v∣i ∥ei∥α ⩽ ∥v∥u
n

∑
i=1

∥ei∥α .

As ∑ni=1 ∥ei∥α is only dependent on α and independent on v, name that Cα for each α and we are done.

(∗∗) Consider the boundary of n − 1-dimensional sphere: Sn−1 = {v ∶ ∥v∥ = 1}. By Heine-Borel, Sn−1 is

compact. Knowing that the Euclidean norm, equivalent to the uniform norm, is at least stronger than the

α-norm, consider f ∶ (V, ∥⋅∥) → [0,∞) that maps v ↦ ∥v∥α is continuous. Thus f ∣Sn−1 has a minimum value

c ≠ 0. (Well, if c = 0, it wouldn’t make sense as only the zero vector has zero norm.) Considering v ∈ V / {0},

v

∥v∥
∈ Sn−1 ⇒ ∥ v

∥v∥
∥
α

⩾ c⇒ ∥v∥α ⩾ c ∥v∥ .

Then we are essentially done.

The last part of the class will be devoted to the introduction of multiple integration, as the understanding of

elementary measure theory may be helpful to learning the rest of the content.

Definition. We say Z ⊂ Rn has measure zero if for every ε > 0 there exists a countable collection A of open

n-cells Ri = (ai1, bi1) × ... × (ain, bin) that cover Z such that

∑
i

[
n

∏
j=1

(bij − aij)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
volume of Ri

] < ε.

Beginning of February 8, 2023

Last lecture we discussed the definition of measure zero. Today we will first discuss Riemann integration in R2,

constructing the integral from scratch.

Consider a rectangle R = [a, b] × [c, d]. Recall that in the one-dimensional case we partition [a, b] into n partitions;

here we consider

P = {xi}ni=0 , a = x0 < x1 < ... < xn = b; Q = {yj}mj=0 , c = y0 < ... < ym = d.
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Therefore we obtain a two-dimensional "grid" G = P ×Q, partitioning the rectangle into mn parts. Denote Rij =
Ii × Jj , where Ii = [xi−1, xi], Jj = [yj−1, yj]. The area of each part is then

∣Rij ∣ = ∣Ii∣ ⋅ ∣Jj ∣ = ∆xi ⋅∆yj .

Additionally, we can choose a sample (sij , tij) in each of the rectangles. Multiplying the function value f(sij , tij)
at the sample point with the area of the rectangle Rij gives the volume of the "rectangular prism" at the ij-th part.

Therefore it makes sense to define the Riemann sum as following:

R(f,G,S) = ∑
i,j

f(sij , tij) ∣Rij ∣ ,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

U(f,G) = supS R(f,G,S) = ∑i,jMij ∣Rij ∣

L(f,G) = infS R(f,G,S) = ∑i,jmij ∣Rij ∣ ,

Here Mij and mij is the supremum and infimum of f on the ij-th minor rectangle. The upper Riemann integral

is defined as the infimum of U(f,G) over all choices of partitioning; the lower Riemann integral is defined as the

supremum of L(f,G) over all choices of partitioning. The function f is Riemann integrable on R if the upper and

lower Riemann sums equate: if for every ε > 0 there exists a partition G such that U(f,G) − L(f,G) < ε. This part

is identical to the one-dimensional case.

Consider the following theorem (which may be surprising,) which we will prove later.

Theorem. (Riemann-Lebesgue) A bounded function f ∶ R → R is Riemann integrable if and only if its set of

discontinuities has measure zero.

We don’t have the proper tools to prove the theorem. We will leave it aside and come back to it when we do.

Proposition. In Rn, the following sets have measure zero (to be proven as an exercise):

• Any finite set

• Any finite or countable union of measure zero sets

• Any subset of a measure zero set

• Rn−1 × {0}

• The image of a measure zero set under a Lipschitz function f ∶ Rn → Rn.

Definition. Define f ∶ U → R, where U ⊂ Rn. Given x ∈ U , the oscillation of f at x is defined by

oscx(f) = lim
r→0

⎛
⎝

sup
y∈B(x,r)

f(y) − inf
z∈B(x,r)

f(z)
⎞
⎠

Example. Consider f(x) = sin(x−1) for x ≠ 0 and 0 when x = 0. Here

osc0(f) = 1 − (−1) = 2.
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Example. For a function g ∈ R→ R with a jump discontinuity at x = c (assume g(c+) > g(c−)),

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

supy∈B(x,r) g(y) = g(c+) + ε(r)

infz∈B(x,r) g(z) = g(c−) − γ(r)
⇒ oscc(g) = g(c+) − g(c−).

Proposition. f is continuous at x if and only if oscx(f) = 0.

The proposition is rather trivial in proof; however, it has great implications. Particularly, we can consider

D = discontinuities of f ∶=
∞
⋃
k=1

{x ∶ oscx(f) >
1

k
} .

Proof of Riemann-Lebesgue Theorem. (⇒) Assume f is Riemann integrable. It suffices to prove that D′
k has mea-

sure zero for all k ∈ N, where

D′
k =Dk/ {gridlines of partition} , D =

∞
⋃
k=1

Dk.

The rationale behind which is that if D′
k has measure zero, Dk also has measure zero as the gridlines have

measure zero from the previous proposition. Subsequently, D, as the countable union of Dk, has measure zero.

(Out of time. More in next lecture...)

Beginning of February 10, 2023

Today we continue with the unfinished proof on the Riemann-Lebesgue theorem.

Theorem. (Riemann-Lebesgue) A bounded function f ∶ R → R is Riemann integrable on R if and only if its

set D of discontinuities has measure zero.

Proof of the two-dimensional case. (⇒) Define Dk = {(x, y) ∈ R ∶ osc(x,y)(f) ⩾ 1
k
}. It suffices to show that Dk has

measure zero for every k ∈ N. The main idea is to cover Dk with open rectangles associates to some sufficiently

fine grid G = P × Q. For Dk, define D′
k = Dk/ [(P ×R) ∪ (R ×Q)], i.e., D′

k is Dk minus the "grid lines" of G.

Consider the collection of open rectangles {Rij} associated to grid G. Consider

B ∶= {Rij which intersect D′
k} ⊃D′

k.

It then suffices to show that B has infinitesimal hypervolume. Consider

∑
Rij∈B

∣Rij ∣ ⩽ k ∑
Rij∈B

(Mij −mij) ∣Rij ∣ = k(U(f,G) −L(f,G)) < ε,

last step by the fact that f is Riemann integrable. Note that Mij = supx∈Cl(Rij) f(x), mij = infx∈Cl(Rij) f(x).
(⇐) Define Dk = {(x, y) ∈ R ∶ osc(x,y)f ⩾ 1

k
}. Suppose D has measure zero. Given a grid G and k ∈ N, each Rij

belongs to one of the following:

G = {Rij ∶Mij −mij <
1

k
}, B = {Rij ∶Mij −mij ⩾

1

k
}.

Consider the difference between upper and lower Riemann integrals:

U(f,G) −L(f,G) =
∞
∑
Rij∈G

(Mij −mij) ∣Rij ∣ + ∑
Rij∈B

(Mij −mij) ∣Rij ∣.
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Concerning the blue part, we know that Mij −mij < 1
k

, hence

∑
Rij∈G

(Mij −mij) ∣Rij ∣ <
∑Rij

∣Rij ∣
k

.

Regarding the red part, with Mij −mij ⩽ 2 ∥f∥u, we have

∑
Rij∈B

(Mij −mij) ∣Rij ∣ ⩽ 2 ∥f∥u ∑
Rij∈B

∣Rij ∣ .

With ∑Rij
∣Rij ∣ fixed, we can first choose k ∈ N, independent of the grid G chosen, such that ∣R∣

k
< ε

2
. Here we

utilize the fact that Dk ⊂ D has measure zero for all k ∈ N. Denote the cover of open rectangles {Sk}∞k=1 ⊃ Dk

with total volume less than ε
4∥f∥u

. Here we need an additional lemma: the Lebesgue number lemma.

Lemma. (Lebesgue) Let K be a compact subset of a metric space (X,d). Let U be any covering of K, then there

exists a Lebesgue number λ > 0 such that E ⊂K and diam(E) < λ implies E ⊂ U for some U ∈ U .

Note that we cannot directly apply Lebesgue number lemma to Dk as Dk may not be compact. However, we can

apply similar logic to R. For every z ∈ R/Dk, let Wz be a neighborhood of z such that supWz
f − infWz f ⩽ 1

k
.

Then U = {Wz}z∈R/Dk
∪ {Sk}∞k=1 covers R. As R is compact, let λ be the Lebesgue number associated with this

covering U , we can choose G such that diam(Rij) < λ for all Rij . As each Rij must in contained in some U ∈ U
regardless if Rij ∈ G or Rij ∈ B, picking Rij ∈ B ensures Rij be contained in some Sl. As each Rij ∈ B is contained

in some Sk, ∑Rij∈B ∣Rij ∣ ⩽ ∑∞
k=1 ∣Sk ∣ < ε

4∥f∥u
. Therefore U(f,G) −L(f,G) < ε

2
+ ε

2
= ε, and we are done.

Based on the Riemann-Lebesgue theorem, we can define the following:

Definition. Let S ⊂ Rn be such that ∂S has measure zero. We can define

∫
S
f = ∫

R
fIS ,

where R is any rectangle that contains S.

Beginning of February 13, 2023

Today we will cover Fubini’s theorem, similar to the one that is covered in multivariable calculus.

Theorem. (Fubini) Consider R = [a, b] × [c, d]. Then for continuous f ,

∬
R
f = ∫

b

a
∫

d

c
f(x, y) dy dx = ∫

d

c
∫

b

a
f(x, y) dx dy.

As we learned previously from Riemann-Lebesgue, we know that f is Riemann integrable if the set of discontinuities

has measure zero. We can find some examples where the Fubini’s theorem in Calculus 3 fails to work.
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Example. Consider f ∶ [−1,1]2 → R defined by f(x, y) = 1 for x ∈ Q, y = 0 and f(x, y) = 0 otherwise. Note

∫
1

−1
f(x,0) dx

does not make any sense. However, the discontinuitiesD = [−1,1]×{0} has measure zero, hence the function

is indeed Riemann integrable.

With this said, consider the Fubini’s theorem ⋅ kai, 425b exclusive (actually not.)

Theorem. (Fubini ⋅ kai) Assume f ∶ R → R is bounded. Define the lower and upper slice integrals as

F (y) = ∫
b

a
f(x, y) dx, F (y) = ∫

b

a
f(x, y) dx.

If f ∈ R(R), then F ,F ∈ R([c, d]), and

∫
R
f = ∫

d

c
F (y) dy = ∫

d

c
F (y) dy.

Corollary. If F = F on [c, d], then the Calculus 3 version holds.

Remark. We may (or may not) be able to prove Fubini’s theorem using the interchangability of double sums...

Proof of Fubini’s theorem. Consider the first statement: F ,F ∈ R([c, d]). Usually we were asked to create a

partition... But right now, as we need to construct our partition given some grid partition R. Hence, choose

ε > 0, and let G = P ×Q be a grid such that U(f,G) −L(f,G) < ε. It suffices to prove

L(f,G)
(∗)
⩽ L(F ,Q) ⩽ U(F ,Q)

(∗∗)
⩽ U(f,G).

We only focus on proving (∗); (∗∗) can be proven in an analogous way. To this end, consider

L(f,G) = ∑
i,j

mij ∣Rij ∣ =
n

∑
j=1

(
n

∑
i=1

mij∆xi)∆yj , mij = inf
(x,y)∈Rij

f(x, y),

L(F ,Q) =
n

∑
j=1

mj∆yj , mj = inf
y∈Jj

F .

Here mij is the infimum of f over each grid mij , and mj is the infimum of F over the strip Jj . Now it suffices to

show that, for all j,
m

∑
i=1

mij∆xi ⩽mj .

Fix y = y0. By the definition of infimum we have

mij = inf
(x,y)∈Rij

f(x, y) ⩽ inf
x∈Ii,y=y0

f(x, y) = inf
x∈Ii

f(x, y0) =mi(x, y0).

Here the left-hand side essentially takes the infimum over a superset of the right-hand side, hence the inequality

between infimums can be established. As a result of this inequality, we have
m

∑
i=1

mij∆xi ⩽
m

∑
i=1

mi(x, y0)∆xi = L(f(x, y0), P ) ⩽ ∫
b

a
f(x, y) dx = F (y).

Taking the infinum over Jj on both sides returns the desired result.
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Lastly we will touch a bit on Schauder basis.

Definition. Let (V, ∥⋅∥) be a normed vector space over F = R or C. The sequence (vi)∞i=1 in V is a Schauder

basis if for every w ∈ V there exists a unique αi, i ∈ N, such that

lim
n→∞

∥
n

∑
i=1

αivi −w∥ = 0.

The key differentiation between Schauder basis and the Hamel basis is that the former introduces approximation

by a limit, meanwhile the latter requires the linear combination to equate with w. Namely, lp(N;C) has Schauder

basis en = (0,⋯,0,1,0,⋯), but en is not a Hamel basis.

Beginning of February 15, 2023

Having equipped ourselves with the notion of measure zero, we can continue with a more efficient discussion of

cheap Lp spaces. They are not inexpensive; they are cheap. Note that the real Lp spaces are defined using the

Lebesgue integral instead of the Riemann integral. They are, however, useful enough to justify introducing them in

this context.

Lp norms measure size in many different ways. However, they are not true norms on spaces like Rloc(R). The

primary reason is degeneracy. Specifically, consider the function that takes f(x) = 0 for x ≠ a and x = a for x = a. It

is zero a.e., hence its Lp norm is zero (from a previous exercise and from previous lecture on measure zero sets);

however, f is not the zero function f(x) = 0.

We can fix this problem by introducing a new normed vector space, where the elements are not functions. Instead,

they are equivalent classes of functions.

Definition. For f, g ∈ Rloc(I), I a closed interval in R, we say that f ∼ g if f = g a.e. in I.

Introducing new temporary notations on equivalent classes:

[f] = {g ∈ Rloc(I), f ∼ g} .

An element g ∈ [f] is a representative of the equivalence class [f]. Additionally, consider the space of all equivalence

classes, denoted as

Rloc(I,F )/ ∼= {[f] ∶ f ∈ Rloc(I,F )} .

Theorem. Rloc(I,F )/ ∼ is a vector space under operations [f] + [g] = [f + g], α[f] = [αf].

Remark. In the context of the Riemann integral, f = g a.e. in I is not enough to imply f ∼ g. Both functions need

to be locally Riemann integrable. (A rather classic counterexample is the Dirchlet function, which is zero a.e., but

is not Riemann integrable.)

Well, one of my peers asked, "why are we learning the ’dumb’ way but not using the Lebesgue integral?" To answer

the question, the professor quoted some famous mathematician:
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I am aware of certain universities in England, where the Lebesgue integral is taught to first year undergrad. I

am not aware of any universities anywhere where these first year undergrads learn the Lebesgue integral.

Lebesgue integration is difficult, and required lots of "prerequisite" material to be defined rigorously. For now, we

can first consider the Riemann integral and perhaps wait a semester or two before we take a measure theory class.

Example. Consider an example of an equivalence class: fractions. With simple arguments like 2
4
= 1

2

holding, we can define an equivalence relationship like (2,4) ∼ (1,2). However, consider the "dumb-dumb"

addition of fractions: a
b
+ c
d
= a+c
b+d . Why does this not work? The essence of the problem is that under this

system of addition, we cannot freely choose the representative of the equivalence class. (Try taking a = 1,

b = 2 and a = 2, b = 4 respectively. We return different answers!)

Proof of the addition axiom. With the fraction example failing, if we need to show [f] + [g] is well-defined, it

suffices to show that f ∼ f ′ and g ∼ g′ implies f + g ∼ f∗ + g∗. Consider

f ∼ f∗⇔ Zf ∶= {x ∶ f(x) ≠ f∗(x)} is a measure zero set,

g ∼ g∗⇔ Zg ∶= {x ∶ g(x) ≠ f∗(g)} is a measure zero set.

Now consider h = f + g and h∗ = f∗ + g∗,

Zh = {x ∶ h(x) ≠ h∗(x)} ⊂ Zf ∪Zg, a measure zero set.

(The other vector space axioms are proved on a similar note.)

Remark. We can easily obtain that [f] + [g] = [f + g] = [g + f] = [g] + [f].

Definition. We define cheap Lp space as

LPR(I) = {[f] ∈ Rloc(I)/ ∼} ,

such that a representative f(x) ∈ [f] has

∫
I
∣f(x)∣p dx < +∞.

Remark. It can be verified that taking any representative in the equivalence class yields the same result. Namely,

f ∼ g⇒ ∣f(x)∣p ∼ ∣g(x)∣p, so their integral are also the same.

Definition. The Lp norm in cheap Lp spaces is defined by

∥[f]∥p = (∫
I
∣f(x)∣p dx)

1
p

.

Remark. Later, we simply denote ∥[f]∥p as ∥f∥p.

At least, we propose a theorem (that we would not prove.)
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Theorem. Assume f ∈ Rloc(R) and f has finite L1 norm. Choose ε, δ > 0. Then there exists g ∈ Cc(R)
(continuously compactly supported) such that ∥f − g∥1 < ε and ∥g∥u ⩽ 4 ∥f∥u. If supp(f) ⊂ (a, b), then g can

be chosen to satisfy supp(g) ⊂ (a − δ, b + δ).

This is equivalent of saying if we use the L1 notion of distance, we can take our favorite L1 function f , and we can

find a compactly supported continuous function that is close to f in the L1-sense. (This statement still holds true

even with Lebesgue integrals.) This is particularly important if we want to consider any L1 function. We will not

officially prove it, but (in the next lecture) we will at least try to convince ourselves that it’s true. :)

Beginning of February 22, 2023

Consider the theorem from last week (I am quoting the notes from the last lecture): if we use the L1 notion of

distance, we can take our favorite L1 function f , and we can find a compactly supported continuous function that is

close to f in the L1-sense.

Sketch of proof. Consider the function f . It has to decay for large x values (or else it would have infinity L1

norm.) We can then truncate the function over some compact interval [A,B]:

f∗ = f ⋅ I[A,B].

This allows us to approximate the integral by a step function on a couple of tiny intervals. We can then choose

the value of these steps as, for example, the infimum of the function over each interval (the lower Riemann

sum.) We then have the area as such - we should be familiar with it:

f∗∗ =
N

∑
i=1

miI[xi−1,xi).

However, the step function we get it not continuous. Instead, we replace each of the tiny steps with something

that is continuous. Suppose we have some step function from xj−1 to xj that looks like a rectangle if we plot

them out; we can then approximate it by a isoceles trapezoid defined on (xj−1 − δ, xj + δ). Specifically, the graph

of the approximation function connects the points (xj−1 − δ,0) → (xj−1,mj) → (xj ,mj) → (xj + δ,0). Connecting

the individual graphs gives us a function that satisfies the desired properties.

Remark. Interpreting the statement topologically, the theorem suggests that C0
C(R) is dense on (L1

R(R), ∥⋅∥1).
After a small discussion on approximation theory, we now move forward to convolutions. In an essence, convolution

is weighted average. Recall in calculus when we wanted to find the center of mass, or the weighted average of

x-coordinates associated to the density ρ(x):

x = 1

∫
b
a ρ(x) dx

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
mass

∫
b

a
x ρ(x)
±
weight

dx.

Example. Consider the function f ∶ R → R defined by f = I[0,∞). For this function f , the "sliding average"

of f over an (x − ε, x + ε) interval is

fε(x) =
1

2ε
∫

x+ε

x−ε
f(z) dz.

The unweighted average graph is one if x > ε, zero if x < −ε, and fε(x) = 1
2
+ x

2ε
if x ∈ (−ε,+ε).
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Suppose we want to insist integrating over R, we can do so by considering an indicator function

fε(x) = ∫
R
( 1

2ε
I[x−ε,x+ε] {z}) f(z) dz = ∫

R
( 1

2ε
I[−ε,ε](x − z)) f(z) dz.

Definition. Let φ, f ∈ Rloc(R). Assume ∫R φ(y)f(x − y) dy converges absolutely for every x ∈ R. The

convolution of φ and f , denoted φ ∗ f , is defined by

(φ ∗ f)(x) = ∫
R
φ(y)f(x − y) dy.

Remark. If the φ has L1 norm of unity, we can actually think about convolution as a weighted average.

We then discuss a bit about the properties of convolutions.

Proposition. Assume φ, f, g ∈ Rloc(R). Assume

∫
R
φ(y)f(x − y) dy and ∫

R
φ(y)g(x − y) dy

converge absolutely for every x ∈ R, then

• (Linearity) The convolution of linear combinations are linear:

φ ∗ (cf + dg) = c(φ ∗ f) + d(φ ∗ g).

• (Commutativity) ∫R φ(x − y)f(y) dy converges absolutely for every x ∈ R, and φ ∗ f = f ∗ φ.

• If φ ∈ L1
R(R) and f is bounded, then

∥φ ∗ f∥u ⩽ ∥φ∥1 ∥f∥u .

Proof. The linearity follows directly from the definition of convolution and the linearity of Riemann integrals.

Commutativity can be proved by a change in variable operation. Regarding the last inequality,

∣φ ∗ f(x)∣ = ∣∫
R
φ(y)f(x − y) dy∣ ⩽ ∥f∥u ∫R

∣φ(y)∣ dy = ∥f∥u ∥φ∥1 .

Theorem. Suppose φ, f ∈ Rloc(R), φ has finite L1 norm, and f is bounded. Then φ ∗ f exists for all x ∈ R
and is continuous.

Proof. We want to show that φ∗f(x)−φ∗f(y) is small provided that x and y are close together. Indeed, consider

the integral representation of the convolution, we have

∣φ ∗ f(x) − φ ∗ f(y)∣ = ∫
R
[φ(x − z) − φ(y − z)]f(z) dz ⩽ ∥f∥u ∫R

∣φ(x − z) − φ(y − z)∣ dz.

Let’s assume for now that φ ∈ C0
C(R), which implies φ is uniformly continuous. Choose r > 0 large enough such

that supp(φ) ⊂ [−r, r]. Then φ(x−z), which is φ shifted and flipped, is actually defined on [x−r, x+r]. Similarly,

φ(y − z) is defined on [y − r, y + r]. Specifically, if ∣x − y∣ < 1, then

∫
R
∣φ(x − z) −Φ(y − z)∣ dz = ∫

x+r+1

x−r−1
∣φ(x − z) − φ(y − z)∣ dz.
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To this end, we can use the fact that φ is uniformly continuous to choose δ > 0 such that

∣x∗ − y∗∣ < δ⇒ ∣φ(x∗) − φ(y∗)∣ < ε

∥f∥u ⋅ 2(r + 1)
.

We now get rid of the assumption of φ ∈ C0
C(R). Let (φ)∞n=1 be a sequence in CC(R) such that ∥φ − φ∥1 → 0. By

the previous proof we know that φ ∗ f is continuous for all n ∈ N. Indeed, consider

∥φ ∗ f − φ ∗ f∥u = ∥(φ − φ) ∗ f∥u ⩽ ∥φ − φ∥1 ∥f∥u → 0.

Thus φ⇉ φ, and applying the uniform limit theorem completes the proof.

Beginning of February 24, 2023

Last time, we went over the definition and some properties of convolution. Namely,

φ ∗ f(x) ∶= ∫
R
φ(x − y)f(y) dy = ∫

R
φ(y)f(x − y) dy = f ∗ φ(x).

Additionally, if f ∈ Rloc(R) and bounded, and φ ∈ L1
R(R), then φ ∗ f is continuous.

Convolutions can be thought of as weighted averages; the above theorem of continuity helps us approximating

"bad" functions f by nicer ones φ ∗ f , if φ has certain properties. This brings up the topic of approximate identities.

Recall that if φε = 1
2ε
I[−ε,ε] and f = I[0,∞), we have

φε ∗ f(x) = 1

2ε
∫

x+ε

x−ε
f(y) dy.

If we wish to consider the average over some neighborhood, the average would be zero if the neighborhood lies

entirely left of −ε, one if the neighborhood lies entirely right of ε, and variable otherwise. Note that as ε gets smaller,

the function φε gets closer to f . This brings up the concept of approximate identity.

Definition. Let (φn)∞n=1 be a sequence in Rloc(R). We say that (φn)∞n=1 is an approximate identity if

• ∫R φn(x) dx = 1 for all n ∈ N.

• (If φn < 0 for some x ∈ R) supn∈N ∫R ∣φn(x)∣ dx < +∞.

• For every δ > 0, limn→∞ [∫
−δ
−∞ ∣φn(x)∣ dx + ∫

∞
δ ∣φn(x)∣ dx] = 0.

Remark. The approximate identity is a sequence of functions, not a single function.

Example. The sequence of functions φn = n
2
I[− 1

n ,
1
n ] is an approximate identity.

Theorem. Let (φn)∞n=1 be an approximate identity on R. Suppose f ∈ Rloc(R) and bounded.

• If f is continuous at x, then φn ∗ f(x) → f(x).

• If f is continuous on (a, b), then φn ∗ f(x) ⇉ f on [c, d] ⊂ (a, b).

• (Will not be proven) φn ∗ f → f in Lp for any p ∈ [1,∞).
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Proof of convergence. It suffices to show that φn ∗ f(x) − f(x)
n→∞→ 0. Considering the integral representation,

φn ∗ f(x) − f(x) = ∫
R
φn(y)f(x − y) dy − ∫

R
f(x)φn(y) dy = ∫

R
φn(y) [f(x − y) − f(x)] dy.

As we wish to use the third identity in the definition of approximate identity, we split the integral into three:

I = ∫
−δ

−∞
φn(y) [f(x − y) − f(x)] dy + ∫

∞

δ
φn(y) [f(x − y) − f(x)] dy + ∫

δ

−δ
φn(y) [f(x − y) − f(x)] dy.

Each of the three integrals are small, but of different reasons. Starting from ∫
δ
−δ dy, choose δ > 0 such that

∣y∣ < δ⇒ ∣f(x − y) − f(x)∣ ⩽ ε

2M
,

where M is the upper bound for supn∈N ∫R ∣φn(x)∣ dx. This way,

∣∫
δ

−δ
φn(y) [f(x − y) − f(x)] dy∣ ⩽ ∫

δ

−δ
∣φn(y)∣ ∣f(x − y) − f(x)∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
< ε

2M

dy < ε

2M
×M = ε

2
.

For ∫
−δ
−∞ dy and ∫

∞
δ dy, we use the fact that f is bounded (hence it has finite uniform norm):

RRRRRRRRRRRRRRRRR

∫
−δ

−∞
φn(y) [f(x − y) − f(x)]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
<2∥f∥u

dy + ∫
∞

δ
φn(y) [f(x − y) − f(x)]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
<2∥f∥u

dy

RRRRRRRRRRRRRRRRR

⩽ 2 ∥f∥u [∫
−δ

−∞
φn(y) dy + ∫

∞

δ
φn(y) dy] .

Now we can choose n large enough such that the integrals of the right-hand side sums up to less than ε
4∥f∥u

.

Therefore for any ε > 0 we have ∣φn ∗ f(x) − f(x)∣ < ε, which completes the proof for pointwise convergence at

each x where f is continuous. To prove for uniform convergence, we use the fact that f is uniformly continuous

on [c, d] ⊂ (a, b). In fact, we choose a δ > 0 on a wider interval of [c − δ, d + δ] to prevent the case where x − y
goes "out of the range". Thus for this δ, ∣f(x − y) − f(x)∣ < ε

2M
for ∣y∣ < δ, and we are done by running the entire

argument.

Beginning of February 27, 2023

Last time we talked over approximate identities, which allows us to estimate a L1-finite function by not only a

continuous function but also smooth function. Today we will continue on the theory of approximation. Namely, we

wish to approximate a continuous function f ∶ [a, b] → R uniformly by a polynomial. We need a trick up our sleeves:

∫
b

a
(x − y)nf(y) dy =

n

∑
k=0

(n
k
)xk ∫

b

a
(−y)n−kf(y) dy

is a polynomial in x. A natural extension is that

∫
b

a
p(x − y)f(y) dy

is a polynomial in x if p is. (The latter equation is a linear combination of the ∫
b
a (x − y)

nf(y) dy for some n ’s.)

The equations above look similar to convolutions - they indeed are. Specifically, for some r > b − a,

∫
b

a
p(x − y)f(y) dy = p ∗ (fI[a,b](x)) = (pI[−r,r]) ∗ (fI[a,b]) .

The question now brings down to: can I build an approximation identity of the form φn = I[−r,r] ⋅ pn?
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WLOG, consider r = 1. (Why?) We start with an arbitrary function to start with:

φ1(x) = (1 − x2)c−1I[−1,1], c1 = ∫
1

−1
(1 − x2) dx.

To center the mass towards the center, we simply take the power to the term (1 − x2) to obtain

φn(x) = (1 − x2)nc−1
n I[−1,1], cn = ∫

1

−1
(1 − x2)n dx.

Lemma. φn is an approximate identity.

Proof of lemma. By definition, ∥φn∥1 = 1; and all φn are nonnegative. Now as δn is an even function that takes

zero value outside of [−1,1], it suffices to show, for δ ∈ (0,1),

lim
n→∞∫

1

δ
φn(x) dx = 0.

Take x ∈ [δ,1]. Consider the quotient that defines φn(x):

φn(x) =
(1 − x2)n

2 ∫
1

0 (1 − x2)n dx
.

The above part has function is bounded above by 1− δ2. For the bottom integral, the following inequality holds:

(1 − x2)n ⩾ max{1 − nx2,0} = (1 − nx2)I[− 1√
n
, 1√

n
].

Thus

∫
1

0
(1 − x2)n dx ⩾ ∫

1√
n

0
(1 − nx2) dx = 2

3
√
n
.

Therefore the quotient is now bounded above by

(1 − x2)n

2 ∫
1

0 (1 − x2)n dx
⩽ 3

√
n

4
(1 − δ2)n.

Concerning the term (1 − δ2)n, we have, by the fact that (1 + a)n ⩾ 1 + na,

(1 − δ2)n = ( 1 − δ2

1 − δ2 + δ2
)
n

= 1

(1 + δ2

1−δ2 )
n ⩽ 1

1 + n δ2

1−δ2
⇒ 3

4

√
n

1 + nδ2/(1 − δ2)
n→∞→ 0.

Theorem. (Weierstraß) Let f ∶ R → R be continuous. here exists a sequence of polynomials (pn)∞n=1 such

that pn ⇉ f on [a, b].

Proof. WLOG, let [a, b] = [0,1], and f ≡ 0 on (−∞,0] ∪ [1,+∞). Let (φn)∞n=1 be as in the previous lemma. Then

φn ∗ f ⇉ on [0,1], and φn ∗ f is a polynomial for each n. Namely, for x ∈ [0,1],

φn ∗ f(x) = ∫
1

0
c−1
n I[−1,1](x − y) (1 − (x − y)2)n f(y) dy.

Lastly we will touch a bit on the Stone-Weierstraß theorem. Proof not required, as it’s quite long.

The motivation originates that we want to approximate f ∈ C([a, b]) with elements of some collection of functions

A (an algebra - definition to be provided, but the class of polynomials is an algebra) What can A be?
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Particularly, A cannot "vanish" at any point.

Definition. A vanishes at x0 ∈ [a, b] if f(x0) = 0 for all f ∈ A.

If A vanishes at some x0, then they cannot approximate a function f that is nonzero on x0.

Additionally, A must separate points.

Definition. A separates points if for every x, y ∈ [a, b], there exists f ∈ A such that f(x) ≠ f(y).

If A does not separate points, they they cannot approximate a function f whose f(x) ≠ f(y).

Theorem. (Stone-Weierstraaß) (For next class.)

Beginning of March 1, 2023

Today we will talk about Stone-Weierstraß theorem. We will state the real-valued Stone-Weierstraß theorem, then

we will use that to prove the general case in the complex plane.

Theorem. (Weierstraß). Polynomials on [a, b] are dense in (C([a, b], ∥⋅∥u).

Recall the following definitions.

Definition. Let E be a set, and A ⊂ FE where F = R or C.

• A separates points on E if for every x1, x2 ∈ E there exists f ∈ A such that f(x1) ≠ f(x2).

• A vanishes at no point of E if for every x0 ∈ E there exists f ∈ A such that f(x0) ≠ 0.

Definition. Let E be a set, and A ⊂ FE where F = R or C. We say that A is an F -algebra of functions on

E if A is closed under addition and multiplication. Specifically,

f, g ∈ A, c, d ∈ F ⇒ cf + dg ∈ A, fg ∈ A.

Theorem. (Stone-Weierstraß) Let K be a compact metric space. Let A ⊂ RK be a real algebra. Assume A
separates points on K, and A vanishes at no point of K. Then A is dense in (C(K,R), ∥⋅∥u). That is, given

f ∈ C(K,R) and ε > 0, there exists g ∈ A such that ∥f − g∥u < ε.

We will not prove it in class - it was an hour-long proof. Assuming the real version is true, we will prove an

analogous one for complex-valued functions. However, we need one more assumption.

Definition. A complex algebra A is self-adjoint if f ∈ A ⇒ f ∈ A.
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Theorem. (Stone-Weierstraß, complex version) Let K be a compact metric space, let A ⊂ CK be a complex

algebra. Assume A separates points on K, and A vanishes at no point of K, and A is self-adjoint. Then A is

dense in (C(K,C), ∥⋅∥u).

Proof. Consider AR = {f ∈ A ∶ Im(f) ⊂ R}. (Notation abusing alert: Im(f) is the image of f .) AR is an algebra:

f ∈ A ⇒ Re(f) = f + f
2

∈ AR.

A vanishes at no points on K; indeed, consider g(x) = Re(f(x) ⋅ f(x)), which has nonzero reals. Additionally,

A separates points. Given x1, x2 ∈ K such that x1 ≠ x2, choose g ∈ A such that g(x1) ≠ g(x2), then choose h ∈ A
such that h(x2) ≠ 0. Construct (a random function)

f(x) = h(x)
h(x1)

[ g(x)
g(x1) − g(x2)

− g(x2)
g(x1) − g(x2)

] .

By Stone-Weierstraß, AR is dense in (C(K,R, ∥⋅∥u). Thus, given f ∈ A write f = u + iv where u, v ∈ C(K,R).
Then choose uε, vε ∈ AR such that

∥u − uε∥u <
ε

2
, ∥v − vε∥u <

ε

2
.

Therefore

∥f − (uε + ivε)∥u < ε,

which finishes the proof.

Definition. A trigonometric polynomial is a function p ∶ R→ C of the form

p(θ) =
N

∑
n=−N

cne
inθ, N ∈ N0, cn ∈ C, θ ∈ R.

Remark. Trigonometric polynomials can always be written in the form

p(θ) = a0 +
N

∑
n=1

an cosnθ +
N

∑
n=1

bn sinnθ, an, bn ∈ C.

Denote

Ptrig([−π,π];F ) = trig polynomials on the field F = R or C,

Cper([−π,π];F ) = F -valued 2π-periodic functions defined on R.

Claim. By Stone-Weierstraß, Ptrig([−π,π];F ) is dense in (Cper[−π,π];F ), ∥⋅∥u).
Note that we cannot directly use Stone-Weierstraßdirectly because the domain R is not compact, and Ptrig([−π,π];F )
does not separate points in R. More in the next lecture.

Beginning of March 3, 2023

Continuing on last lecture, we make one further notation:

F [−π,π]
per = {f ∈ FR ∶ f(θ + 2π) = f(θ) ∀θ ∈ R} = 2π-periodic F -valued functions on R.

Recall the claim: Ptrig([−π,π], F ) is dense in (Cper([−π,π], F ), ∥⋅∥u). The problem with using Stone-Weierstraßis

because the domain R is not compact, and Ptrig([−π,π], F ) does not separate points on R.
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To fix the problem, consider the unit circle in C, defined as

S1 = {z ∈ C ∶ ∣z∣ = 1} .

There exists a bijective mapping from the real interval [−π,π) to the complex unit circle S1. Thus, consider the

function f ∈ FS
1

and the function f̃ ∈ F [−π,π]
per . The transformation

f
Θ↝ f̃

is a well-defined isometry with respect to the uniform norm. Specifically, ∥f∥u = ∥f̃∥
u
. Additionally, denote

P (S1, F ) = {p ∈ FS
1

, p(z) =
N

∑
n=−N

cnz
n} ; Θ (P (S1, F )) = Ptrig([−π,π], F ).

Additionally, P (S1, F ) is dense in (C(S1;F ); ∥⋅∥u) by Stone-Weierstraß theorem. (To be proven in a homework

exercise.) Therefore, Ptrig is dense in Cper by the isometric mapping Θ.

We will then move on to another topic: inner product spaces and best approximation. We will think of the projection

of a vector to another vector as the "closest distance" in a certain subspace.

Definition. Suppose V is a vector space; U and W are subspaces of V .

• U +W = {u +w ∈ V ∶ u ∈ U,w ∈W} is the sum of U and W in V . It is a subspace of V .

• V is the direct sum of U and W , if for every v ∈ V there exists a unique u ∈ U and w ∈ W such that

v = u +w. This is written as V = U ⊕W .

Proposition. V = U ⊕W if and only if V = U +W and U ∩W = {0}.

Proof. (⇒) the fact that V = U ⊕W implies V = U +W is obvious. Additionally, choose v ∈ U ∩W . Then

v = v + 0 = 0 + v,

then both v and 0 has to bee in both U and W . Then v can only be the zero subspace.

(⇐) Assume V = U +W and U ∩W = {0}. Choose v ∈ V ; write

v = u1 +w1 = u2 +w2 ⇒ u1 − u2 = w2 −w1.

As u1 − u2 ∈ U and w2 −w1 ∈W , they have to be zero because U and W don’t intersect elsewhere.

Consider the following question: given a vector space V and a subspace U ⊂ V , can we find an explicit complemen-

tary subspace W such that V = U ⊕W? It turns out that if an inner product is defined on the vector space, we can

define W = U⊥, a complemental subspace to U .

Definition. A projection operator P ∶ V → V is a linear map such that P 2 = P ○ P = P .
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Theorem. Let V be a vector space, and P ∶ V → V is a projection.

• For u ∈ Im(P ), P (u) = u;

• P (I − P ) = 0; I − P is also a projection, Im(I − P ) = Ker(P ).

• V = Im(P ) ⊕ Im(I − P ) = Im(P ) ⊕Ker(P ).

Definition. The kernel of a transformation P is defined as

Ker(P ) = {v ∈ V ∶ Pv = 0} .

Corollary. If V = U ⊕W and we define P ∶ V → V by P (u +w) = u, u ∈ U and w ∈W , then P is the unique

projection on V such that Im(P ) = U and Ker(P ) =W .

Proof of first bullet. If u ∈ Im(P ), then u = Pv for some v ∈ V . This implies Pu = P 2v = Pv = u.

Proof of second bullet. Consider the transformation P (I−P )v = Pv−P 2v = 0, hence P (I−P ) is the zero function.

Now consider the transformation (I − P )2:

(I − P )(I − P ) = I(I − P ) − P (I − P ) = I − P − 0 = I − P.

Consider the last statement on Im(I − P ) = Ker(P ). (⊂) we know for a fact that everything that belongs to

Im(I − P ) takes some for m of (I − P )v; but P (I − P )v = 0, so Im(I − P ) ⊂ Ker(P ). (⊃) additionally, suppose

Pu = 0, we have that (I − P )u = u, therefore Ker(P ) ⊂ Im(I − P ).

Proof of third bullet. Consider

I = I − P + P.

Therefore for every v ∈ V ,

v = (I − P )v + Pv.

The first element belongs to Im(I − P ), and the second element belongs to Im(P ). Thus

V = Im(P ) + Im(I − P ) = Im(P ) +Ker(P ).

Additionally, suppose v ∈ Im(P ) ∩ Ker(P ). By the fact that v ∈ Im(P ), v = Pv; but 0 = Pv as v ∈ Ker(P ). Thie

completes the proof.

We will prove the corollary in the next lecture.

Beginning of March 6, 2023

Last time we talked a bit about projection operators: a linear mapping P ∶ V → V such that P 2v = Pv. An example

is the projection to a subspace in Rn. We also showed that V = Im(P ) ⊕Ker(P ). We further claimed that the direct

sum decomposition uniquely defines a projection P .
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Corollary. If V = U ⊕W and P ∶ V → V is defined by P (u + w) = u for u ∈ U and w ∈ W , then P is the

unique projection on V such that Im(P ) = U and Ker(P ) =W .

Proof. It is easy to show that Im(P ) = U ; let w = 0 and pick whatever u ∈ U desired. Additionally, for Ker(P ),
take P (0 + w) = 0 gives the desired result of Ker(P ) = W . Now we prove the uniqueness of P . Suppose P̃ is

another projection such that Im(P̃ ) = U and Ker(P̃ ) =W . Then

u ∈ U ⇒ P̃ u = u; w ∈W ⇒ P̃w = 0;

Then by the assumption of linearity, P̃ (u +w) = P̃ u + P̃w = u, the same definition as what we started with.

Example. The orthogonal projection is a classic example that we should think in mind, but certainly it is not

the only projection. For example, we can consider R2 = U ⊕Wa, where U = span{(0,1)}, Wa = span{(1, a)}.

Consider

Pa ∶ R2 → R2, Pa(x, y) = (0, y − ax).

It is clear that Im(Pa) = U ; clearly P (0, y) = (0, y). Then for Ker(Pa),

(x, y) ∈ Ker(Pa) ⇒ Pa(x, y) = (0, y − ax) = 0⇒ y = ax ≡ (x, y) = x(1, a) ∈W.

w ∈W ⇒ w = (x, ax);Pa(x, ax) = (0, ax − ax) = (0,0) ∈ Ker(Pa).

Thus Ker(Pa) =Wa.

Definition. A (complex) inner product on a complex vector space V is a function ⟨⋅, ⋅⟩ ∶ V × V → C s.t.

• ⟨x, y⟩ = ⟨y, x⟩ for every x, y ∈ V ;

• ⟨λx + y, z⟩ = λ(x, z) + ⟨y, z⟩;

• ⟨x,x⟩ = 0 for every x ∈ V − {0}.

The vector space V affiliated with the inner product ⟨⋅, ⋅⟩ is defined as a complex inner product space.

Example. The "dot product" on Rn is an inner product. Similarly, we can define similarly a complex dot

product on Cn as follows:

⟨(z1,⋯, zn), (w1,⋯,wn)⟩ = z1w1 +⋯ + znwn.

Example. The L2 inner product on R([a, b])/ ∼ is defined as

⟨f, g⟩ = ∫
b

a
f(x)g(x) dx.

The `2 inner product on `2(N,C) is defined as

⟨(cn)n, (dn)n⟩ =
∞
∑
n=1

cndn.
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Proposition. An inner product space is always a normed vector space, with

∥v∥ =
√

⟨v, v⟩.

Definition. A complete inner product space is called a Hilbert space.

Definition. If u, v ∈ V and V is an inner product space, we say that u and v are orthogonal if

⟨u, v⟩ = 0.

We denote the orthogonality as u ⊥ v.

Additionally, for a subspace W of V , the orthogonal complement of W , denoted W ⊥, is defined as

W ⊥ = {v ∈ V ∶ ⟨v,w⟩ = 0 ∀w ∈W} .

A set S ⊂ V is orthogonal if v,w ∈ S ⇒ v ⊥W ; orthonormal if it’s orthogonal and v ∈ S ⇒ ∥v∥ = 1.

Proposition. W ⊥ if a subspace of V , and W ∩W ⊥ = {0}.

Proof. We only prove that W ∩W ⊥ ⊂ {0}. To this end, pick w ∈W ∩W ⊥; then ⟨w,w⟩ = 0⇒ w = 0.

Consider the situation where W +W ⊥ = V , (and by the previous results we have that V = W ⊕W ⊥.) We can then

make the following definition.

Definition. Let (V, ⟨⋅, ⋅⟩) be a real or complex inner product space, and W is a subspace of V . Assume

V =W ⊕W ⊥. Define the orthogonal projection onto W : projW ∶ V → V to be the projection operator such

that Im(projW ) =W and Ker(projW ) =W ⊥.

Theorem. Let (V, ⟨⋅, ⋅⟩) be a real or complex inner produce space. Take u ∈ V − {0}. Then

V = (span{u}) ⊕ (span{u})⊥ ,

and for every v ∈ V ,

proju(v) =
⟨v, u⟩
∥u∥2

u.

Proof. We wish to write v = cu +w, where cu ∈ (span{u}) and w ∈ (span{u})⊥. Then

v − cu = w ∈ (span{u})⊥ ⇒ ⟨v − cu, u⟩ = 0.

From this, we have that ⟨v, u⟩ − c ∥u∥2 = 0, which determines a unique c as

c = ⟨v, u⟩
∥u∥2

.
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By this, we have that

v = ⟨v, u⟩
∥u∥2

u + (v − ⟨v, u⟩
∥u∥2

u) ,

with the first element belonging to span{u} and the second element belonging to (span{u})⊥. Then

proju(v) = proju (⋯) = ⟨v, u⟩
∥u∥2

u.

Beginning of March 8, 2023

Last time, we discussed about real or complex inner product space (V, ⟨⋅, ⋅⟩). Particularly, if W is a subspace of V

and if V =W ⊕W ⊥, then projW ∶ V → V is the projction on V with image W and kernel W ⊥. Additionally,

projuv =
⟨v, u⟩
∥u∥2

u. (∥u∥ =
√

⟨u,u⟩)

Remark. V =W ⊕W ⊥ does not work all the time. For example, we can consider V = C([a, b]) with

⟨f, g⟩ = ∫
b

a
fg dx,

where W is the set of all polynomials.

Proposition.

∥u + v∥2 = ∥u∥2 + ∥v∥2 + 2Re ⟨u, v⟩ .

Specifically, ∥u + v∥2 = ∥u∥2 + ∥v∥2 if u ⊥ v; this is the general form of Pythagorean theorem.

Proposition. (Cauchy-Schwarz)

∣⟨u, v⟩∣ ⩽ ∥u∥ ∥v∥ .

Proof. By definition of orthogonal projection, we have that

v − projuv + projuv = v,

where v − projuv and projuv are perpendicular. Hence we have that

∥v∥2 = ∥(v − projuv) + projuv∥
2 = ∥v − projuv∥

2 + ∥projuv∥
2 ⩾ ∥projuv∥

2
.

As projuv =
⟨u,v⟩
∥u∥2 u, simple rearrangements give

∥v∥2 ⩾ ∣⟨v, u⟩∣2

∥u∥2
⇒ ∥u∥ ∥v∥ ⩾ ∣⟨v, u⟩∣2 .

Remark. From the above propositions, ∥u∥ =
√

⟨u,u⟩ is indeed a norm in the inner product space.

We will next discuss a bit into the projection onto a subspace as "best approximation".
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Theorem. Assume V =W ⊕W ⊥. Then for all v ∈ V ,

∥v − projW v∥ ⩽ ∥v −w∥

for every w ∈W , with equality obtained if and only if w = projW v.

If we want to approximate v ∈ V by some w ∈ W , the closest distance we can get is obtained by taking projW v. In

other words, projW v is the best approximation of v in W .

Proof. Consider the norm ∥v −w∥. On a similar note to the proof of Cauchy-Schwarz, take

∥v −w∥2 = ∥(v − projW v) + (projW v −w)∥2
.

Note that v − projW v ∈W ⊥ and projW v −w ∈W , so we can then apply Pythagorean theorem to obtain

∥v −w∥2 = ∥v − projW v∥
2 + ∥projW v −w∥2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
⩾0

,

which proves the statement. The equality is taken if the second-term norm is zero.

Remark. The converse of the statement is also true (will be proven as a homework exercise.)

Corollary.

∥projW v∥ ⩽ ∥v∥ .

As V = W ⊕W ⊥ might not be true all the time, we may be interested to pose a question. A partial answer would

be that W is a complete subspace of V . In particular, W finite-dimensional implies V = W ⊕W ⊥. (if W is finite-

dimensional, the coordinate map provides an isomorphism between W with Rn or Cn while preserving the norms

and distances. Rn and Cn are complete.) Additionally, if V is complete but W is not, then V ≠W ⊕W ⊥.

Proposition. (Gram-Schmidt) If W is finite dimensional and (w1,⋯,wn) is an orthogonal basis of W ,

projW v =
n

∑
j=1

projWj
v.

Proof. It suffices to show that

v −
n

∑
j=1

projWj
v ∈W ⊥.

Note that if a vector v∗ is orthogonal to each of the basis elements of W , v∗ is also orthogonal to W . To this end,

consider each of the inner product

⟨v −
n

∑
j=1

projWj
v,wk⟩ = − ∑

j∈[n]−k
⟨projWj

v,wk⟩ + ⟨v − projWk
v,wk⟩ .

The first term has ⟨projWj
v,wk⟩ = 0 for all j ∈ [n] − k as the projection projWj

v is parallel to wj , which is

perpendicular to wk by the definition of orthogonal basis. Additionally, the second term is zero by definition of

orthogonal projection. This proves the claim.
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Beginning of March 10, 2023

In the last lecture, we discussed that if W is a complete subspace of a real or complex inner product space (V, ⟨⋅, ⋅⟩),
then V =W ⊕W ⊥. In particular, if W is finite-dimensional with orthogonal basis (w1,⋯,wn), then

projW v =
n

∑
j=1

projWj
v

for every v ∈ V . We will now consider the case in a general setting of infinite-dimensional inner vector spaces with

a Schauder basis (wi)∞i=1. Recall that (ui)∞i=1 is a Schauder basis for a normed vector space (V, ∥⋅∥) if for every v ∈ V
there exists a sequence (ci)∞i=1 of scalars such that

lim
n→∞

∥v −
n

∑
i=1

ciui∥ = 0.

Theorem. Assume W has an orthogonal Schauder basis (wi)∞i=1. Put Wn = span(w1,⋯,wn) for every n ∈ N.

Then for every v ∈ V ,

projW v =
∞
∑
i=1

projWi
v = lim

n→∞

n

∑
i=1

projWi
v = lim

n→∞
projWn

v.

Proof. Denote w = projW v. There exists (ci)∞i=1 such that w = limn→∞∑ni=1 ciwi with ∥w −∑ni=1 ciwi∥
n→∞→ 0.

Using the best approximation quantity, we have that

∥w −
n

∑
i=1

projWi
w∥ ⩽ ∥w −

n

∑
i=1

ciwi∥
n→∞→ 0.

At this point, we know that w = projW v = limn→∞ projWn
w. Now we want to show that replacing w with v does

not change the result. Here the key is to realize that Wn ⊂W , so

projWn
v = projWn

(projW v) = projW (projWN
v),

(to be proven as a homework exercise.) As

projWn
v = projWn

w
n→∞→ w = projW v,

with the first equality obtained by the above property and the last equality directly from the definition. This

proves the claim.

Next we will discuss Bessel’s inequality and Parseval’s identity. Consider the following setup: (V, ⟨⋅, ⋅⟩) is a real or

complex inner product space, and let (en)n be an orthonormal sequence in V with Wn = span(e1,⋯, en). Define

Pn(⋅) ∶= projWn(⋅), fi ∶= ⟨f, ei⟩ .

Then

Pnf =
n

∑
i=1

fiei.

Additionally, note that

∥Pnf∥2 = ⟨
n

∑
i=1

fiei,
n

∑
i=1

fiei⟩ =
n

∑
i=1

n

∑
j=1

fifj ⟨ei, ej⟩ =
n

∑
i=1

∣fi∣2 .

With the above clarifying notations, we can introduce Bessel’s inequality.
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Theorem. (Bessel)

lim
n→∞

∥Pnf∥2 =
∞
∑
i=1

∣fi∣2 ⩽ ∥f∥2
.

Lemma. (Riemann-Lebesgue) fi → 0 as i→∞.

Theorem. (Parseval) If Pnf → f and Png → g as n→∞, then

⟨f, g⟩ =
∞
∑
i=1

figi = ⟨(fi)i, (gi)i⟩ .

Note that Riemann-Lebesgue lemma is an immediate consequence of Bessel’s inequality by series convergence.

Remark. The equality for Bessel’s lemma is obtained where Pnf → f .

Proof of Bessel’s Inequality. Bessel’s lemma is (sort of) already been proven, as ∥Pnf∥ ⩽ ∥f∥ for every n ∈ N by

the definition of orthogonal projection. Regarding the equality, take

∥f∥2 = ∥f − Pnf + Pnf∥2 = ∥f − Pnf∥2 + ∥Pnf∥2
.

The equality can only be taken when ∥f − Pnf∥2 → 0, i.e., Pnf → f as n→∞.

Proof of Parseval’s Identity. Here we apply the polarization identity, which tells us that every inner product can

be written as some combination of norms. With Pnf → f and Png → g,

∥f + g∥2 =
∞
∑
n=1

∣fn + gn∣2 = ∥(fn + gn)n∥`2(N;C) ⇒ ⟨f, g⟩ = 1

4
[∥f + g∥ +⋯] = 1

4
[∥(fi + gi)i∥`2(N;C) +⋯] = ⟨(fi)i, (gi)i⟩ .

Now we discuss the statement in a different setup. Consider (V, ⟨⋅, ⋅⟩) a Hilbert space, and (ei)i an orthonormal

Schauder basis. Then Pnf → f in (V, ⟨⋅, ⋅⟩) for every f ∈ V . Consequently,
∞
∑
i=1

∣fi∣2 = ∥f∥2
; ⟨f, g⟩ =

∞
∑
i=1

figi.

The map L ∶ (V, ⟨⋅, ⋅⟩) to (`2(N;C, ⟨⋅, ⋅⟩) determined by

L(f) = (fi)i

is an isometry of Hilbert spaces.

Beginning of March 20, 2023

This lecture will be a crash course on Fourier series. The goal is to represent f ∶ [−π,π] → C in L2 by

f(θ) =
∞
∑
n=−∞

cne
inθ.

Remark. We cannot directly use the Stone-Weierstraß theorem. Not to say the limitations (f may not be periodic or

continuous), Namely, we want to look for a single choice of two-sided sequence of coefficients (cn)∞n=−∞ regardless

of the error tolerance.

One way to think about Fourier series is that we consider the low-frequency truncations

SNf(θ) =
N

∑
n=−N

f̂(n)einθ
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while cutting off the high-frequency terms. This can be done by truncating the series of exponentials from Z.

The setting used in Fourier approximation is f ∈ (L2
R([−π,π];C, ⟨⋅, ⋅⟩).

Additionally, f ∼ g if f = g a.e., f, g ∈ R[−π,π]. The inner product is defined by

⟨f, g⟩ = 1

2π
∫

π

−π
f(θ)g(θ) dθ = 1

2π
∥fg∥L1,[−π,π] .

New notations include

en(θ) = einθ, ⟨en, em⟩ = 1

2π
∫

π

−π
e−(n−m)θ dθ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1, n =m

0, n ≠m.

Note that (en)∞n=−∞ is orthonormal and linearly independent.

Definition. The Fourier coefficients are defined as

f̂(n) = ⟨f, en⟩ =
1

2π
∫

π

−π
f(θ)e−inθ dθ.

Note that the projection of f on en takes

projenf = ⟨f, en⟩
∥en∥2

en = f̂(n)en.

As a result, the N -th partial sum of f , denoted Snf , is

SNf = projWN
(f) =

N

∑
n=−N

f̂(n)en, wN = span(en)Nn=−N .

Even if f is real-valued,

f̂(n) = 1

2π
∫

π

−π
f(θ)e−inθ dθ

may not be real-valued. However, we claim that the N -th partial sum of f is real-valued. Indeed, consider

f̂(n) = 1

2π
∫

π

−π
f(θ)einθ dθ = f̂(−n).

Thus f̂(n)en = f̂(−n)e−n. Each time we extend N by one, we add a term in both directions, which can be summed

up as such:

SNf = f̂(0)e0 +
N

∑
n=1

f̂(n)en + f̂(−n)e−n =
1

2π
∫

π

−π
f(θ) dθ +

N

∑
n=1

2Re(f̂(n)en).

Suppose we already know that

p(θ) =
N

∑
n=−N

cne
inθ = projWN

(p),

we can immediately see that p̂(m) = cm for ∣m∣ ⩽ N , and p̂(m) = 0 for ∣m∣ > N . Additionally SMp = p for M ⩾ N .

Theorem. If f ∈ L2
R, then

lim
N→0

∥Snf − f∥L2 = 0.
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Proof. Let g ∈ Cper([−π,π]), then consider the sum

f − SNf = f − g + g − p + p − SN(p) + SN(p) − SN(g) + SN(g) − SN(f).

and our goal is to (1) make f − g small in L2, and (2) control g − p in ∥⋅∥u with Stone-Weierstraß. Choosing N

large makes p − Sn(p) zero, then

Blue part. Here we choose g ∈ Cper([−π,π]) such that ∥f − g∥L2 < ε
4
. (This is done by homework exercise 3.5.1.)

Problem: Leslie 3.5.1. Suppose f ∈ Rloc(R) is T -periodic, and assume 1 ⩽ p < ∞. Show that given ε > 0

there exists a continuous T -periodic function g such that ∥g∥u ⩽ 4 ∥f∥u and

∫
T

0
∣f(x) − g(x)∣p dx < ε.

Red part. Here we consider p ∈ Ptrig([−π,π]) such that ∥g − p∥u <
ε
4
. As the uniform norm is stronger than that

L2 norm, such p works as we apply Stone-Weierstraß.

Purple part. Here p is a polynomial; hence by the previous observation we can simply take N ⩾ deg(p) to make

the difference zero.

Orange part. Note that ∥Sn(p) − Sn(g)∥ = ∥Sn(p − g)∥. As Sn(⋅) is a projection operator of (⋅) onto WN , it cannot

increase length, so ∥Sn(p − g)∥ ⩽ ∥p − g∥ < ε
4
.

Green part. Again, ∥Sn(g) − Sn(f)∥ = ∥Sn(g − f)∥ ⩽ ∥g − f∥ < ε
4

if we consider the L2 norm.

Summing all five parts, we have

∥f − SNf∥ ⩽ ∥f − g∥ + ∥g − p∥ + ∥p − SN(p)∥ + ∥SN(p) − SN(g)∥ + ∥SN(g) − SN(f)∥ < ε,

as needed.

The above is all true; however, as soon as we want to write

f =
∞
∑
n=−∞

f̂(n)en,

the statement become problematic - the right-hand side may not be a Riemann-integrable function. In fact, f may

differ from the infinite series by a set of measure zero, which causes problems when we try to perform integration.

We will end the lecture with three propositions without proof.

Proposition. Fourier coefficients are uniquely determined, i.e., if

lim
N→∞

∥
N

∑
n=−N

cnen − f∥ = 0,

then cn = f̂(n) for every n.

Corollary. If f, g ∈ R([−π,π]) and f̂(n) = ĝ(n) for every n, then f = g a.e..
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Proposition. (Parseval) If f, g ∈ L2
R, then

⟨f, g⟩ = 1

2π
∫

π

−π
f(θ)g(θ) dθ = ⟨(f̂(n))∞n=−∞, (ĝ(n))∞n=−∞⟩

`2(Z;C) =
∞
∑
n=−∞

f̂(n)ĝ(n).

Specifically,
1

2π
∫

π

−π
∣f(θ)∣2 dθ =

∞
∑
n=−∞

∣f̂(n)∣
2
.

Beginning of March 22, 2023

Consider two F -vector spaces X and Y . We define

L(X,Y ) = {all linear transformations from X to Y } .

The primary question here is: when is T ∈ L(X,Y ) continuous? The answer is "not always", unless X is finite-

dimensional. We will primarily discuss infinite-dimensional vector spaces.

Example. Consider the vector spaces with norms

(X0 ∶ ∥⋅∥X0
) = (C1[0,1], ∥⋅∥u), (X1 ∶ ∥⋅∥X1

) = (C1[0,1], ∥⋅∥C1), (Y, ∥⋅∥Y ) = (C[0,1], ∥⋅∥u),

and the transformation Ti ∶ Xi → Y defined by Ti(f) = f ′ for i = 0,1. We claim that T1 is continuous but T0

is not. Particularly,

∥T1f − T1g∥Y = ∥f ′ − g′∥u ⩽ ∥f − g∥X1
,

and the proof follows from an ε-δ argument. However, if we try to run

∥f ′ − g′∥u
?
⩽ ∥f − g∥u ,

this is indeed untrue. Indeed, taking some function with low uniform norm but high derivative, such as

fn = 1
n

sinnx, gives us an explicit counterexample. Particularly fn → 0 but T0Fn ↛ 0.

Theorem. Let T ∶ X → Y be a linear transformation between the normed F -vector spaces. The following

statements are equivalent:

(1) T is bounded that there exists C > 0 such that ∥Tx∥Y ⩽ C ∥x∥X for every x ∈X.

(2) T is continuous.

(3) T is continuous at zero.

Proof: (1) implies (2). Assume that T is bounded. Take x1, x2 ∈ X, we wish Tx1 − Tx2 small in Y whenever

x1 − x2 is small in X. Applying linearity, we have that

∥Tx1 − Tx2∥Y = ∥T (x1 − x2)∥Y ⩽ C ∥x1 − x2∥X .

Take ∥x1 − x2∥X < C−1ε for every ε > 0 suffices.
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Proof: (3) implies (1). Assume T is continuous at zero. Here we pick ε = 1. Choose δ > 0 such that ∥x∥X < δ ⇒
∥Tx∥Y ⩽ 1. For any x ∈X − {0}, consider x̃ ∈ ∂B(0, δ) defined by

x̃ = δx

∥x∥
.

Thus considering the linear transformation T x̃, we have that

∥T δx

∥x∥X
∥
Y

⩽ 1⇒ ∥Tx∥Y ⩽ δ−1 ∥x∥X .

Hence taking C = δ−1 suffices.

Definition. Define

B(X,Y ) = {all bounded linear transformations from (X, ∥⋅∥X) to (Y, ∥⋅∥Y )} .

The operator norm of T ∈ B(X,Y ) is defined by

∥T ∥X→Y ∶= sup
x≠0

∥Tx∥Y
∥x∥X

.

Proposition.

sup
x≠0

∥Tx∥Y
∥x∥X

= sup
∥x∥X⩽1

∥Tx∥Y = inf {C ⩾ 0 ∶ ∥Tx∥Y ⩽ C ∥x∥X} .

The proof will be left as an exercise. We consider some of its implications in the lecture.

Corollary. If T ∶X → Y is bounded, then ∥Tx∥Y ⩽ ∥T ∥ ∥x∥X .

Corollary. If T ∈ B(X,Y ) and S ∈ B(Y,Z), then

ST ∈ B(X,Z)

with operator norm

∥ST ∥X→Z ⩽ ∥S∥Y→Z ∥T ∥X→Y .

Remark. ST is a composition of transformation. STx means "transforming x to Tx, then Tx to STx.

Proposition. Suppose T ∈ L(X,Y ). If X is finite-dimensional, then T ∈ B(X,Y ).

Proof. Consider a basis for X: (x1,⋯, xn). Then for every x ∈X,

∥Tx∥Y = ∥T (c1x1 +⋯ + cnxn)∥Y ⩽
n

∑
j=1

∣cj ∣ ∥Txj∥Y ⩽ max
j∈[n]

∣cj ∣
⎛
⎝

n

∑
j=1

∥Txj
∥
Y

⎞
⎠
.

The first term maxj∈[n] ∣cj ∣ is a norm that is equivalent to ∥⋅∥X . Additionally, ∑nj=1 ∥Txj
∥
Y

is a fixed value, so

∥Tx∥Y is indeed bounded above; hence T ∈ B(X,Y ).
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Proposition. Let X and Y be normed vector spaces. If (Y, ∥⋅∥Y is complete, then so is (B(X,Y ), ∥⋅∥X→Y ).

Beginning of March 24, 2023

Today we will cover isomorphisms and matrices as transformation on finite-dimensional spaces.

Definition. An isomorphism is a bijection between two objects that preserves structure. Specifically,

• A topological isomorphism (or a homeomorphism) preserves topology, where f and f−1 map open

sets to open sets; this is equivalent to that f and f−1 are continuous.

• A vector space isomorphism preserves vector space structure. Linear bijections always do this.

• A normed vector space isomorphism preserves both topology and vector space structure.

Remark. Technically the above definition on normed vector space isomorphism is not the "right" one. See below.

Definition. Let T ∶ X → Y is a linear transformation between two normed vector spaces over R or C. If T

is surjective and there exists c,C > 0 such that

c ∥x∥X ⩽ ∥Tx∥Y ⩽ C ∥x∥X

for every x ∈X, then we say that T is an isomorphism on normed vector spaces.

Proposition. T ∶ X → Y is a normed vector space isomorphism if and only if it is a vector space isomor-

phism and a homeomorphism.

Proof. We only prove (⇒) here. (⇒) To show injectivity, consider, for x1 ≠ x2,

∥Tx1 − Tx2∥Y = ∥T (x1 − x2)∥Y ⩾ c ∥x1 − x2∥X
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

>0

> 0.

As T is a linear bijection, it is a vector space isomorphism.

To show topological isomorphism, we have that ∥Tx∥Y ⩽ C ∥x∥X which implies T continuous. Considering the

continuity of T −1, we have that

∥T −1y∥
Y
= 1

c
(c ∥T −1y∥

X
) ⩽ 1

c
∥T (T −1y)∥

Y
= 1

c
∥y∥Y .

Therefore T −1 also has finite operator norm, hence it is continuous.

We denote the set of all normed vector space isomorphisms T ∶X → Y as

Ω(X,Y ) = {Normed Vector Space IsomorphismsT ∶X → Y } .

Ω(X,Y ) ⊂ B(X,Y ).
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Theorem. Assume T ∈ Ω(X,Y ), S ∈ B(X,Y ), and

∥S − T ∥X→Y < ∥T −1∥−1

Y→X .

Then S ∈ Ω(X,Y ) and

S−1 =
∞
∑
n=0

(idX − T −1S)nT −1.

Corollary. Ω(X,Y ) is an open subset of B(X,Y ).

Proof. Take r = ∥T −1∥−1

Y→X for each T ∈ Ω(X,Y ).

Corollary. Ω(X,Y ) is homeomorphic to Ω(Y,X).

Proof. Consider the continuous map T → T −1.

We then work with matrices: a quick linear algebra review. Formally, matrices are linear transformations on finite-

dimensional vector spaces. Consider the following setting.

Fm×n = {m × n matrices with entties in F} .

A matrix A ∈ Fm×n has m rows and n columns, with

A = (ai,j) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a11 ⋯ a1n

⋮ ⋱ ⋮
am1 ⋯ amn

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

The algebraic operations of matrices is omitted here. Particularly, if A ∈ Fm×n and c = [c1,⋯, cn]T ,

Ac =
n

∑
j=1

cjcolj(A) ∈ Fm.

We will also go over change of basis. Let X be a finitely-dimensional vector space, and let U = (u1,⋯, un) and

U ′ = (u′1,⋯, u′n) be bases. The function ϕU ∶X → Fn take

[u]U = ϕU(c1u1 +⋯ + cnun) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

c1

⋮
cn

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

Then considering [u]U ′ , we have that

[u]U ′ = [c1u1 +⋯ + cnun]U ′ =
n

∑
j=1

cj[uj]U ′ .

Here we define the change-of-basis matrix PU ′←U by

colj(PU ′←U) = [uj]U ′ .
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Then for this change-of-basis transformation, we have that

[u]U ′ = PU ′←U [u]U .

To this end, let T ∶ X → Y be a normed vector space; let X and Y be finite-dimensional vector spaces with basis

U = (u1,⋯, un) and V = (v1,⋯, vn), respectively. Additionally, let

[u]U =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

c1

⋮
cn

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

With the transformation T ∶X → Y ,

[Tu]V =
n

∑
j=1

cj[Tuj]V = A[u]U ,

where A is the matrix defined by

colj(A) = [Tuj]V .

Formally, A is the matrix representation of T with respect to U and V . Further, the matrix representation of T

with respect to U ′ and V ′ can be obtained by combining the two conclusions above:

[Tu]V ′ = PV ′←V [Tu]V = PV ′←VA[u]U = PV ′←VAPU←U ′[u]U ′ .

We present an important conclusion regarding transformations: If X,Y are finite-dimensional F -vector spaces, then

L(X,Y ) ≅ Fm×n.

In particular, consider the transformation T ↦ A that maps T to the matrix of transformation A. Its inverse is

ϕ−1
V ○LA ○ ϕU ↤ A.

Lastly, we give some norms on Fm×n: for

A = (ai,j) ∈ Fm×n,

• The operator norm on L(Fn, Fm) takes ∥A∥ = ∥LA∥Fn→Fm ;

• The `1 norm, or ∥⋅∥1, is defined as

∥A∥1 =
m

∑
i=1

n

∑
j=1

∥aij∥ ;

• The Frobenius (`2) norm is defined as

∥A∥2
2 =

m

∑
i=1

n

∑
j=1

∥aij∥2
.

The Frobenius norm also preserves the inner product structure from Fnm:

⟨A,B⟩ ∶=
m

∑
i=1

n

∑
j=1

aijbij .

Proposition. The Frobenius norms satisfy

∥ATB∥
2
⩽ ∥A∥2 ∥B∥2 .
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Beginning of March 27, 2023

*Prof. Leslie was not available today; instead the class is taught by Prof. Joshua Swanson.

Today we will start with multivariable differentiation. Recall the classical definition of derivative in 425a. The

derivative of f ∶ (a, b) → R at x0 ∈ (a, b), if it exists, is defined as

f ′(x0) = lim
h→0

f(x0 + h) − f(x0)
h

.

The question we have here in 425b is: what about f ∶ U → Y where U is an open subset of normed vector space X?

First noting if we change R in the classical definition to Y , the statement would not change much. However, there

are some complications when replacing the domain by a normed vector space. In fact, we cannot directly "add h"

to some x0; the idea is to consider x0 + hz in the direction of some fixed z ∈X.

Definition. The Gâteaux derivative of f ∶ U → Y in the direction of z ∈X at x0 ∈ U is

Dzf(x0) = lim
h→0

f(x0 + hz) − f(x0)
h

,

provided that the derivative exists in (Y, ∥⋅∥Y ).

Remark. The Gâteaux derivative is the generalization of directional derivative from Calculus III.

The Gâteaux derivative is, in fact, a special case of the classic derivative. Given f ∶ U → Y , x0 ∈ U and z ∈X, we can

define the auxiliary function

fz ∶ (−ε, ε) → Y by f(h) = F (x0 + hz).

Then, if the limit exists,

Dzf(x0) = lim
h→0

f(x0 + hz) − f(x0)
h

= lim
h→0

fz(h) − fz(0)
h

= f ′z(0).

Now we discuss the issue of the Gâteaux derivative. Namely, even if Dzf(x0) exists for all z ∈ X, f might not be

continuous at x0.

Example. Define the piecewise function f ∶ R2 → R2 as

f(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x2
1x2

x4
1+x2

2
if x ≠ 0;

0 if x = 0.

Then
f(0 + hz) − f(0)

h
= (hz1)2(hz2)
h((hz1)4 + (hz2)2)

= z2
1z2

h2z2
1 + z2

2

h→0→ z2
1

z2
,

hence Dzf(0) = z2
1z

−1
2 if z2 ≠ 0 and Dzf(0) = 0 if z2 = 0. But f is not continuous at 0. (Why?)

Remark. The Gâteaux derivative is not sufficient for nice Taylor expansions if we want to find the "best linear

approximation" to f ∶ U → Y near x0 ∈ U .
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Definition. Let X,Y be real normed vector spaces, U ⊂X open, and g ∶ U → Y a function. We say that g is

Fréchet differentiable at x0 ∈ U with derivative T ∈ B(X,Y ) if

lim
z→0

∥g(x0 + z) − g(x0) − Tz∥Y
∥z∥X

= 0.

That is, as the norm of z goes to zero, we are essentially reuiring the error of best approximation Tz to tend to zero.

Such T is unique, so we denote it by g′(x0).

Remark. We can take any path with ∥z∥ → 0, whereas the Gâteaux derivative only uses "straight lines" (as seen in

its decomposition into auxiliary functions.) Hence the Fréchet derivative is more global in some sense.

Remark. We can also define continuous differentiability here: g ∈ C1(U ;Y ) means g′ ∶ U → B(X,Y ) is continuous.

Proposition. Assume g ∶ U → Y is differentiable at x0 ∈ U ⊂X. Then:

(a) g is continuous at x0;

(b) g′(x0)z =Dzg(x0) for every z ∈X.

Proof of (a). Consider

∥g(x0 + z) − g(x0)∥Y ⩽ ∥g(x0 + z) − g(x0) − g′(x0)z∥Y + ∥g′(x0)z∥Y .

The second term is bounded by ∥g′(x0)∥X→Y ∥z∥X , which → 0 with the operator norm < ∞ and ∥z∥X → 0. On

the other hand, considering the first term we have

∥g(x0 + z) − g(x0) − g′(x0)z∥Y ⩽ ∥z∥X
∥g(x0 + z) − g(x0) − g′(x0)z∥

∥z∥X
,

with the right-hand side → 0 as z → 0.

Proof of (b). We check if g′(x0)z satisfies the requirement of Dzg(x0):

∥g(x0 + hz) − g(x0)
h

− g′(x0)z∥
Y

=
∥g(x0 + hz) − g(x0) − g′(x0)(hz)∥Y

∥hz∥X
∥z∥X ,

with the first term → 0 as h → 0 by the definition of the Fréchet derivative. Therefore the Fréchet derivative

agrees with the Gâteaux derivative, as desired.

Beginning of March 29, 2023

Recall that a function g ∶ U → Y is Fréchet differentiable at x0 ∈ U with derivative T ∈ B(X,Y ) if

lim
z→0

∥G(x0 + z) −G(x0) − Tz∥Y
∥z∥X

= 0.

Such derivative is unique. Near x0, we have that

g(x) + g′(x0)(x − x0) + o(∥x − x0∥X) as x→ x0 ∈X.
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Definition. f(z) = o(g(z)) as z → a means

lim
z→a

f(z)
g(z)

= 0.

Example. x2 = o(x) as x→ 0.

Additionally, if we can write

g(x) = g(x0) + T (x − x0) + o(∥x − x0∥X)

and T ∈ B(X,Y ), then T = g′(x0).

Example. Consider g ∶ Rm×n → Rn×n defined by g(A) = ATA − I. Is g differentiable? What is g′(A)?

Sol. We consider the difference d = g(A +H) −G(A), which is

d = ((A +H)T (A +H) − I) − (ATA − I) =HTA +ATH +HTH.

We suspect that HTH = o(∥H∥2). To reach the conclusion, we guess TH = HTA + ATH and g′(A) = T . To

validate the condition, we need to show that T ∈ B(Rm×n,Rn×n) and g(A+H) = g(A) +TH + o(∥H∥2). The first

statement is almost trivial as Rm×n is finite-dimensional. For the second statement, we need to check that

∥HTH∥
2

∥H∥2

H→0→ 0.

Here we use the fact that ∥HTH∥
2
⩽ ∥H∥2

2, which gives ∥H∥2 → 0 as H → 0, as desired.

Example. Consider g ∶ C([a, b], ∥⋅∥u) → C1([a, b], ∥⋅∥C1) defined by g(f)(x) = ∫
x
a f(t)

2 dt. Is g differen-

tiable? What is g′(f)?

Sol. We consider the difference d = (g(f + h) − g(f))(x). This equates

d = ∫
x

a
(f + h)(t)2 − f(t)2 dt = ∫

x

a
2f(t)h(t) + h(t)2 dt.

We guess that g′(f) = 2 ∫
x
a f(t)h(t) dt. To this end, note that

∥Th(x)∥C1 = ∥∫
x

a
2f(t)h(t) dt∥

u
+ ∥2fh∥u ⩽ 2(x − a) ∥f∥u ∥h∥u + 2 ∥f∥u ∥h∥u ⩽ 2 (b − a + 1) ∥f∥u ∥h∥u .

Therefore T = g′(f) is both a well-defined and a continuous linear transformation. Again, we need to check that

∥∫
x
a h(t)

2 dt∥
C1

∥h∥u
h→0→ 0.

The C1 norm of the numerator is bounded above by (b − a + 1) ∥h∥2
u, which gives c ∥h∥u → 0 as h→ 0.

Next we will discuss a bit about chain rule. Consider U,V that are subsets of X and Y , respectively. Let g ∶ U → Y

and h ∶ V → Z. Additionally, x0 ∈ U and g(x0) ∈ V ; g differentiable at x0 and h differentiable at g(x0). Then,
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Theorem. (Chain rule)

(h ○ g)′(x0) = h′(g(x0)) ○ g′(x0).

Proof. As g is differentiable at x0, we know that

g(x0 + a) = g(x0) + g′(x0)a + εg(a)
²
o(∥a∥X)

.

Similarly, as h is differentiable at g(x0),

h(g(x0) + b) = h(g(x0)) + h′(g(x0))b + εh(b)
²
o(∥b∥y)

.

Therefore, considering the composition h ○ g, we naturally have that

h(g(x0 + a)) − h(g(x0)) = h(g(x0) + g′(x0)a + εg(a)) − h(g(x0)).

Now that as g′(x0)a + εg(a) = b, the above expression equates

h′(g(x0)) [g′(x0)a + εg(a)] + εh(b).

It may take some work to prove that the infinitesimality of εg(a) and εh(b) are preserved under transformations,

but the intuition should be clear; this leaves

(h ○ g)′(x0) = h′(g(x0)) ○ g′(x0),

as desired.

Beginning of April 3, 2023

Recall the chain rule between normed vector spaces:

Proposition. (Chain rule)

(h ○ g)′(x) = h′(g(x)) ○ g′(x).

Corollary. Let U be open in X and let V be open in Y . Function g ∶ U → V is a bijection, differentiable at

x ∈ U and g−1 differentiable at g(x) ∈ V . Then g′(x) is invertible with

g′(x)−1 = g−1(g(x)).

In particular, g′(x) is a normed vector space isomorphism.

Proof. Proof left as a homework exercise.
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Proposition. Assume g ∈ C1(R), f ∈ B(U,R) and G ∶ (B(U,R), ∥⋅∥u) → (B(U,R, ∥⋅∥u), G(f) = g ○ f . Then

G is differentiable at f for every f ∈ B(U,R, ∥⋅∥u) and

[G′(f)z] (x) = g′(f(x))z(x).

Remark. If g ∈ C1, then for every r > 0,

lim
h→0

sup
∣y∣⩽r

∣g(y + h) − g(y) − g′(y)h∣
∣h∣

= 0.

Proof. We want to show that

lim
z→0

∥G(f + z) −G(f) − (g′ ○ f)∥u
∥z∥u

= supx∈U ∣g(f(x) + z(x)) − g(f(x)) − g′(f(x))z(x)∣
supx∈U ∣z(x)∣

.

If we restrict the attention to ∣h∣ ⩽ ∥z∥u, we have that

lim
z→0

(⋅) ⩽ sup
∣h∣⩽∥z∥u

⎛
⎝

sup
∣y∣⩽∥f∥u

∣g(y + h) − g(y) − g′(y)h∣
∣h∣

⎞
⎠
.

The above proposition is certainly useful. Consider the following example.

Example. Consider g ∶ (C[a, b], ∥⋅∥u) → (C1[a, b], ∥⋅∥C1) defined by [G(f)](x) = ∫
x
a f(t)

2 dt. What is

G′(f)z?

Sol. We let G1(f) = f2, and G2(f̃)(x) = ∫
x
a f̃(t) dt. Thus G = G2 ○G1, so

G′(f)z = [G′
2(G1(f)) ○G′

1(f)] z.

First note that G′
1(f)z = (g′ ○ f)z = 2fz. Then considering G′

2(F1(f)), a linear transformation, we have that

simply G′
2(G1(f)) = G2, so

G′(f)z = G2(2fz) ⇒ (G′(f)z) (x) = ∫
x

a
2f(t)z(t) dt.

We now talk a bit about partial derivatives.

Definition. Let X and Y be finite-dimensional real vector spaces with basis U = (u1,⋯, un) and V =
(v1,⋯, vn). Let P be open in X; for a function f ∶ P → Y , we can define

f(x) =
m

∑
i=1

fi(x)vi,

where fi(x) are the components of f with respect to that basis V . Naturally,

[f(x)]V =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

f1(x)
⋮

fm(x)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, fi(x) = [f(x)]V ⋅ ei.
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Definition. The Gâteaux derivative of f can now be defined by

Dujf(x) =Duj (
m

∑
i=1

fi(x)vi) =
m

∑
i=1

Dujfi(x)vi,

and the i-th component of the derivative is

(Dujf(x))i =Dujfi(x).

Here the expression Dujfi(x) = ∂jfi(x) is the partial derivative of f with respect to the basis U and V .

Definition. If we collect all mn partial derivatives ∂jfi in an m × n matrix, we get the Jacobian matrix:

Jf(x) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∂1f1(x) ⋯ ∂nf1(x)
⋮ ⋱ ⋮

∂1fm(x) ⋯ ∂nfm(x)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

∈ Rm×n.

The Jacobian matrix is the matrix representation of f ′(x) with respect to bases U and V . Namely,

[f ′(x)z]V = Jf(x) [z]U .

Beginning of April 5, 2023

A correction from last time’s notes: if g is differentiable at x and g−1 is also differentiable at g(x), then g′(x) is a

normed vector space isomorphism regardless of dimension.

Last time we were left off with the Jacobian matrix. Namely, in finite dimensions, Jf(x) is the matrix representation

of f ′(x) whenever f is differentiable at x. Particularly, we have the derivative formula:

[f ′(x)]V = Jf(x) [z]U ⇒ f ′(x)z = ϕ−1
V (Jf(x) [z]U) ,

where ϕ−1
V is the inverse coordinate vector to V .

Proposition. Suppose f ∶ Rn → Rm is a function, and U and V are basis of Rn and Rm, respectively. Then

Jf(x) is the matrix representation of f ′(x).

Proof. Suppose A is the matrix representation of f ′(x) with respect to basis U and V . Then

coljA = Aej = A [uj]U = [f ′(x)uj]V = [∂jf(x)]V .

The partial ∂j of f(x) takes the form of

[∂jf(x)]V = [∂j
m

∑
i=1

fi(x)vi]
V

=
m

∑
i=1

∂jfi(x) [vi]V
²
ei

.

Note that ∑mi=1 ∂jfi(x)ei is simply coljJf(x), which completes the proof.

Remark. Note the change in dimensions that are done through the matrix A. [uj]U is a Rn-column (hence U), and

A is a Rm×n matrix. Hence the product A [uj]U returns a Rm-column (hence V ).
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Until now, we have learned that if we know a function is differentiable at x0, then we can compute the derivative

using the Jacobian. However, the existence of Jf(x) does not imply differentiability. This brings the question: if

Jf(x) exists and we have additional information, can we conclude f is differentiable at x?

Proposition. Let X and Y be finite dimensional real normed vector spaces with basis U = (u1,⋯, un) and

v = (v1,⋯, vm), respectively. f ∶ P → Y is C1 at x0 ∈ P ⊂X if and only if x↦ Jf(x) is continuous at x0 (with

respect to any norm) if and only if all partial derivatives are continuous at x0.

Remark. The transformation x ↦ Jf(x) can be continuous under any norm. Indeed, we intend to show for every

ε > 0 there exists δ > 0 such that ∥x0 − y∥X < δ ⇒ ∥Jf(x0) − Jf(y)∥ < ε. Because Rm×n is finite-dimensional, any

norm (operator norm, supremum norm, `2 norm) work the same as they are equivalent. Here we use the `1 norm.

Proof. We know that if the derivative exists we have that

f ′(x)z = ϕ−1
V (Jf(x) [z]U) .

Hence we can consider the Fréchet derivative (although we cannot formally write it down...yet):

∥[f(x0 + z) − f(x0)] − Jf(x0) [z]U∥`1
?= o(∥z∥X).

The `1 norm can now be represented as

∥⋅∥`1 =
m

∑
i=1

RRRRRRRRRRR
fi(x0 + z) − fi(x0) −

n

∑
j=1

∂jfi(x0)zj
RRRRRRRRRRR
.

Define wj = ∑jk=1 zjuj , a "partial sum" where wn = z. Thus

∥⋅∥`1 =
m

∑
i=1

RRRRRRRRRRR

n

∑
j=1

fi(x0 +wj) − fi(x0 +wj−1) − ∂jfi(x0)zj
RRRRRRRRRRR
=
m

∑
i=1

RRRRRRRRRRR

n

∑
j=1
∫

zj

0

d

ds
fi(x0 +wj−1 + suj) ds − ∂jfi(x0)zj

RRRRRRRRRRR
.

Here in the second step we applied the fundamental theorem of calculus, and

d

ds
fi(x0 +wj−1 + suj) = ∂jfi(x0 +wj−1 + suj).

Hence by the triangle inequality,

∥⋅∥`1 ⩽
m

∑
i=1

n

∑
j=1

∣∫
zj

0
∂jfi(x0 +wj−1 + suj) − ∂jfi(x0) ds∣ ⩽ ε ∥z∥X ,

(with some steps omitted) proving the statement as desired.

Beginning of April 7, 2023

We will continue with the discussion in chain rules. Consider finite-dimensional normed vector spaces X,Y,Z with

dimensions n,m, p. Assume further f ∶ P → Y and g ∶ Q → Z, P ⊂ X and Q ⊂ Y . Further f differentiable at x ∈ P
and g differentiable at f(x) ∈ Q. We already know from the chain rule that g ○f is differentiable at x with derivative

(g ○ f)′(x) = g′(f(x)) ○ f ′(x). Essentially, if X,Y,Z are finite-dimensional vector spaces, then we can replace the

derivatives with matrices - the Jacobian matrices are the matrices of transformation of the derivative.
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Proposition.

J(g ○ f)(x) = Jg(f(x))Jf(x).

Remark. Particularly,

[J(g ○ f)(x)]ij =
m

∑
k=1

[Jg(f(x))]ik[Jf(x)]kj .

This matches the definition of partial derivative in calculus III, where

∂jhi(x) =
m

∑
k=1

∂kgi(f(x))∂jfk(x).

We then quickly introduce the gradient vector. Let f ∶ U → R be a function, where U ⊂ Rn is open. If f is

differentiable at x ∈ U , then we can define the gradient vector.

Definition. The gradient vector of f at x is evaluated as

∇f(x) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∂1f(x)
⋮

∂nf(x)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

Remark. f ′(x)z = z ⋅ ∇f(x); and the operator norm ∥f ′(x)∥Rn→R = ∣∇f(x)∣.
We have talked about first derivative, so in principle we can discuss more about higher-order derivatives. Indeed,

let f ∶ U → Y where U ⊂ X is open. For now, assume that f is "nice" enough (in terms of smoothness). From

previous lectures we know that f ′(x) ∈ B(X,Y ), so technically taking the derivative again gives

f ′′(x) = (f ′)′(x) ∈ B(X,B(X,Y )),

a linear transformation where the range is the set of bounded transformation B(X,Y ). Specifically,

((f ′′(x))z)x ∈ Y,

where z,w ∈X. This is because (f ′′(x))z outputs a linear transformation B(X,Y ).
We can slightly change the notations of the second derivative through a bilinear transformation. Specifically, we

define f ′′(x) = B2(X ×X,Y ).

Definition. Let V,W,Z be real normed vector spaces. A bilinear transformation B ∶ V ×W → Z is a map

which is linear in both arguments. Particularly,

B(cv1 + v2,w) = cB(c1,w) +B(v2,w); B(v, cw1 +w2) = cB(v,w1) +B(v,w2).

Remark. Bilinear transformations are not linear. Indeed, B(c(v,w)) = c2B(v,w).
The bilinear transformation B takes the operator norm

∥B∥V ×W→Z = sup
∥B(v,w)∥Z
∥v∥V ∥w∥W

,

where v ∈ V / {0}, w ∈W / {0}. B is bounded if ∥B∥ is finite. Using the same proof, B is continuous if ∥B∥ is finite.

We also define B2(V ×W,Z) is the set of all bounded bilinear transformations B ∶ V ×W → Z. Particularly, it is
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isomorphic to the "ugly definition":

B(V,B(W,Z)) ≅ B2(V ×W,Z).

Example. Any real inner product ⟨⋅, ⋅⟩ ∶X ×X → R is a bilinear transformation.

Example. The quadratic form of a matrix A ∈ Rm×n, defined as B(x, y) = x ⋅Ay is a bilinear transformation

B ∶ Rm ×Rn → R.

Now back to the double derivative f ′(x0)(z,w), a bilinear transformation from f ∶ X → Y . We have the following

identity as a result of the definition:

f ′′(x0)(z,w) = ((f ′)′(x0)z)w.

We also have the following claim.

Proposition.

f ′′(x0)(z,w) = (Dw(Dzf))(x0).

Proof. Consider the difference

Dwf(x0 + hw) −Dwf(x0)
h

− (Dz(f ′)(x0))w,

where Dwf(x0 + hz) = f ′(x0 + hz)w, and Dwf(x0) = f ′(x0)w. Taking the norms, we have that

∥⋅∥Y ⩽ ∥f
′(x0 + hz) − f ′(x0)

h
−Dz(f ′)(x0)∥

X→Y
∥w∥X ,

with the operator norm ∥⋅∥X→Y tending to zero from the derivative of the Fréchet derivative in the direction z.

Therefore the above expression ∥⋅∥Y also goes to zero, proving the claim.

Beginning of April 10, 2023

Last time we talked about second derivatives of a function, focusing on the second derivative as a linear transfor-

mation. Particularly, the following proposition holds:

Proposition.

((f ′)′(x0)z)w = f ′′(x0)(z,w).

The second derivative is the space of bounded bilinear transformation, f ′′(x0) ∈ B2(X ×X,Y ) ≅ B(X,B(X,Y )).
This brings the question: is f ′′(x0) symmetric? The answer is yes, provided the existence of f ′′(x0), and this

condition is stronger than the existence of all second partials.
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Example. f ∶ R2 → R defined by

f(x, y) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

xy(x2−y2)
x2+y2 , (x, y) ≠ (0,0)

0, (x, y) = (0,0).

Here away from the origin,

∂1f(x, y) =
y(x4 + 4x2y2 − y4)

(x2 + y2)2
, ∂2f(x, y) =

x(x4 − 4x2y2 − y4)
(x2 + y2)2

.

Then clearly ∂2(∂1f(x, y)) ≠ ∂1(∂2f(x, y)) at the origin. As f is not twice-differentiable, we cannot directly

switch the order of differentiation!

Restricting the statement to the finite-dimensional case, consider f ∶ P → R where P is an open subset of Rn. (We

do not lose any information by restricting our co-domain to R instead of Rm.) Assume Rn has basis U = (u1,⋯, un),

f ′′(x0)(uj , uk) = f ′′(x0)(uk, uj).

Particularly,

∂k∂jf(x0) = ∂j∂kf(x0).

We can make an inductive argument on n-th derivative. Additionally, if f ∈ Ck, then f is k-times differentiable.

f ∈ Ck if and only if mixed k-th partials commute and are continuous.

Definition. The Hessian matrix of f ∶ Rn → R at x0 (with respect to basis U) is defined as

Hf(x0) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∂1∂1 ⋯ ∂1∂nf(x0)
⋮ ⋱ ⋮

∂n∂1f(x0) ⋯ ∂n∂nf(x0)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

Hf(x0) is symmetric if f ′′(x0) exists and

f ′′(x0)(z,w) = [z]U ⋅Hf(x0) [w]U .

Remark. Above is an example of a quadratic form of the symmetric matrix Hf(x0).

We now move forward to Taylor’s theorem, introducing the multiindex notation.

Example. Assume f ∶ R3 → R is six times differentiable at a. We can write

∂2∂1∂3∂2∂2∂1f(a) = ∂2
1∂

3
2∂3f(a).

We can alternatively write it as ∂αf(a), where α = (2,3,1).

Definition. A multiindex α is an n-tuple of elements that belong to the set Nn0 . It is used to indicate the

number of derivatives for each individual component.
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Definition. Consider a multiindex α = (α1,⋯, αn) = Nn0 . We will use the following definition/notation:

• We define α! = α1!α2!⋯αn!.

• With (x1,⋯, xn) ∈ Rn, we define xα = (x1,⋯, xn)α1,⋯,αn = xα1

1 xα2

2 ⋯xαn
n .

• The absolute value of the multiindex ∣α∣ is define as the sum of the indices, ∣α∣ = α1 +⋯ + αn.

Remark. ∣zα∣ ⩽ ∣z∣∣α∣.

Proposition. (Counting multiindices) If α ∈ Nn0 is a multiindex of order k, then there are k!/α! distinct tuples

of the form (i1,⋯, ik) such that zi1⋯zik = zα.

Theorem. (1-d Taylor) Assume g ∈ (Cm[0,1],R). Given x ∈ (0,1], there exists x∗ ∈ (0, x) such that

g(x) =
m−1

∑
k=0

g(k)(0)
k!

xk + g
(m)(x∗)
m!

xm.

Proof. Apply the mean value theorem m times.

With the Taylor’s theorem in one-dimensional and the multiindex notation, we will now be comfortable in expressing

the Taylor’s theorem in finite-dimensional spaces. Suppose f ∶ P → R and f ∈ Cm, where P is a convex subset of Rn.

Suppose given a we wish to approximate a+z; we opt to parametrize through γ ∶ [0,1] → Rn defined by γ(t) = a+tz.
Then we can write

f(a + z) = f(γ(1)),

where g = f ○ γ ∶ [0,1] → R. Then applying Taylor’s theorem in one-dimensional case,

f(a + z) = g(1) =
m−1

∑
k=0

g(k)(0)
k!

+ g
(m)(t∗)
m!

.

With g(t) = f(a + tz), applying chain rule gives

g′(t) = z ⋅ ∇f(a + tz) =
n

∑
i1=1

zi1∂i1f(γ(t)); g(k)(t) =
n

∑
i1=1

⋯
n

∑
ik=1

zi1⋯zik∂i1⋯∂ikf(γ(t)).

We can then apply the multiindex to return a more beautiful expression. A bit to cover in the next lecture.

Beginning of April 12, 2023

Last time we were talking about Taylor’s theorem in multiple dimensions. Specifically, f ∶ U → R where U is an

open convex subset in Rn. With f ∈ Cm(U ;R), we have the composite function for estimating a point a + z based

on a point a:

g = f ○ γ ∶ [0,1] → R, γ(t) = a + tz.

Here the γ walks along the segment from a to a + z. With

g′(t) = z ⋅ ∇f(γ(t)) =
n

∑
ii=1

zi1∂i1f(γ(t)), g(k)(t) =
n

∑
ii=1

⋯
n

∑
ik=1

zi1zik∂i1⋯∂ikf(γ(t)),

the single-variable Taylor theorem concludes that

f(a + z) = g(1) =
m−1

∑
k=0

g(k)(0)
k!

+ g
(m)(t∗)
m!
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for some t∗ ∈ (0,1).
Remark. The notation for g(k)(t) is obtained from reproducing the chain rule k times. Using multiindex notation,

we use the counting proposition to count for repetitive factors. Summing over the set where ∣α∣ = k,

g(k)(t) = ∑
∣α∣=k

k!

α!
zα∂αf(γ(t)).

Therefore

f(a + z) =
m−1

∑
k=0

∑
∣α∣=k

zα∂αf(a)
α!

+ ∑
∣α∣=m

zα∂αf(z∗)
α!

.

Remark. The last term is o(∣z∣m).
Then we move on to implicit function theorem (in a more simple way first). Recall the vertical line test - consider

an example y =
√

1 − x2, or the upper unit circle. At the point x = 1, we cannot extend the unit circle to the negative

y-axis unless we write some x =
√

1 − y2; but we cannot extend the unit circle to the negative x-axis this way.

Closely speaking, the unit circle is the solution set of

F (x, y) = x2 + y2

with the graph of the circle the level set F −1(1). If we restrict the domain to y > 0, we can write the solution set as

y =
√

1 − x2; and we are interested in the property that goes further than the vertical line test. More specifically, we

want to test the solution y = g(x) only based on the function F (x, y) = x2 + y2.

Theorem. (Implicit function theorem in the plane) Let U be an open subset of R2. Assume F ∈ Cr(U ;R) for

some r ∈ N. Let (x0, y0) be a point in U such that ∂2F (x0, y0) ≠ 0. Denote z0 = F (x0, y0). Then there exists a

unique function g ∶ (x0 − δ, x0 + δ) → (y0 − ε, y0 + ε) such that

Gragh g = F −1(z0) ∩ ((x0 − δ, x0 + δ) × (y0 − ε, y0 + ε) , g ∈ Cr ((x0 − δ, x0 + δ)) .

Here the limitation of the co-domain determines the uniqueness of the function. Additionally note that the implicit

function theorem only provides a (perhaps small) neighborhood of x0; if we can apply the implicit function theorem

on all of x0 in the domain, we can get a global representation. Sometimes it would be more convenient to calculate

for the set (x0, y0) ∶ ∂2f(x0, y0) ≠ 0.

Example. Consider the example

G(x, y) = (x + y) cosxy.

Additionally,

(0,1) ∈ G−1(1) = {(x, y) ∶ G(x, y) = 1} .

Can we write G−1(1) as {(x, y) ∶ y = g(x)} in some neighborhood of (0,1)?

Sol. Compute

∂2G(x, y) = cosxy − x(x + y) sinxy⇒ ∂2G(0,1) = 1 ≠ 0,

hence the tl;dr answer is yes.

Beginning of April 14, 2023
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Today we will first talk a bit about contraction mapping principle (or the Banach fixed point theorem), then we will

continue on implicit function theorem.

Definition. x ∈X ∩ Y is a fixed point of f ∶X → Y if f(x) = x.

Definition. Let (X,d) be a metric space. ϕ ∶X →X is a contraction on X if there exists c ∈ [0,1) such that

d(ϕ(x), ϕ(y)) ⩽ cd(x, y)

for every x, y ∈X. That is, the distance between the two points shrink; the function decreases distances.

Remark. Contractions are uniformly continuous.

Theorem. (Banach fixed point theorem) Let (X,d) be a complete metric space. Let ϕ ∶ X → X be a

contraction. Then ϕ has exactly one fixed point.

Proof. (Uniqueness) assume ϕ(x) = x and ϕ(y) = y. Then

d(x, y) = d(ϕ(x), ϕ(y)) ⩽ cd(x, y) ⇒ (1 − c)d(x, y) ⩽ 0.

As c < 1 and d(x, y) is nonnegative, the only possibility is that d(x, y) = 0.

(Existence) choose x0 ∈X, define xn = ϕn(x0). It suffices to show that (xn)n is Cauchy. We then have

d(xm, xn) ⩽
m−1

∑
k=n

d(xk+1, xk) ⩽
m−1

∑
k=n

ckd(x1, x0) = cnd(x1, x0)
m−n−1

∑
j=0

cj
n→∞→ 0.

This proves the claim.

We then discuss the more general form of the implicit function theorem. (Note: this is not the most implicit function

theorem. The more general form takes the form of a Banach space, but we will stick with Euclidean spaces for now.)

We will use the following notation for the implicit function theorem. Specifically, we are interested in a

mapping from Rn ×Rm → Rm, specifically F ∶ U → Rm, where U ⊂ Rn ×Rm. The elements of U takes form

of (x,y) ∈ Rn ×Rm, where x = (x1,⋯, xn) and y = (y1,⋯, ym). The Jacobian matrix takes

JF (x0,y0) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∂F1

∂x1
⋯ ∂F1

∂xn

∂F1

∂y1
⋯ ∂F1

∂ym

⋮ ⋱ ⋮ ⋮ ⋱ ⋮
∂Fm

∂x1
⋯ ∂Fm

∂xn

∂Fm

∂y1
⋯ ∂Fm

∂ym

⎤⎥⎥⎥⎥⎥⎥⎥⎦

= [J1F (x0,y0) J2F (x0,y0)] .
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Theorem. (Implicit function theorem) Let U be an open subset of Rn × Rm containing (x0,y0). Assume

F ∈ Ck(U,Rm) for some k ∈ N. Write z0 = F (x0,y0). Assume J2F (x0,y0) is invertible; then there exists

a neighborhood V of x0 and W of y0, with V ×W ⊂ U , and a unique function g ∶ V → W such that

F (x, g(x)) = z0 for every x ∈ V (v = g(x) is locally the level set of F −1(z0)), and g ∈ Ck(V ;W ).

Beginning of March 17, 2023

Today we will prove the general statement of the implicit function theorem.

Theorem. (Implicit function theorem) Let U be an open subset of Rn × Rm containing (x0,y0). Assume

F ∈ Ck(U,Rm) for some k ∈ N. Write z0 = F (x0,y0). Assume K2F (x0,y0) is invertible; then there exists a

neighborhood V of x0 and W of y0, with V ×W ⊂ U , and a unique function g ∶ V →W , such that

• F (x, g(x) = z0 for every x ∈ V , and graph g = F −1(z0) ∩ (V ×W ),

• Jg(x) = J2F (x, g(x))−1J1F (x, g(x)) for every x ∈ V ,

• g ∈ Ck(V ;W ).

Remark. TLDR: on the set S where F = z0, we can solve for y as a function of x near (x0,y0) ∈ S, provided that

J2F (x0,y0) is invertible.

Proof. Without loss of generality, let (x0,y0) = (0,0) ∈ Rn×Rm; z0 = 0 ∈ Rm. We want to find g(x), defined near

0 ∈ Rn, such that F (x, g(x)) = 0 on V = dom g. First, for x,y in the neighborhood of interest, by the derivative

we have that

F (x,y) = F (0,0) + F ′(0,0)(x,y) +R(x,y) = 0 + J1F (0,0)x + J2F (0,0)y +R(x,y).

Especially for the second step we have that

JF (0,0)(x,y) =
⎡⎢⎢⎢⎢⎣

J1F (0,0)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∈Rm×n

J2F (0,0)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∈Rm×m

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

⋮
xn

y1

⋮
ym

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= [J1F (0,0) J2F (0,0)]
⎡⎢⎢⎢⎢⎣

x

y

⎤⎥⎥⎥⎥⎦
.

Additionally, the remainder term satisfies R(x,y) = o(∣(x,y)∣) as (x,y) → (0,0).
Solving for the equation, we have that

F (x,y) = 0⇒ y = −J2F (0,0)−1 [J1F (0,0)x +R(x,y)] ,

and note that J2F (0,0) is invertible by assumption. The above equation almost solves for y as a function of x,

but it’s not quite there. However, we can define

Kx(y) = −J2F (0,0)−1 [J1F (0,0)x +R(x,y)] .
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Given x close to 0 ∈ Rn, we look for y such that Kx(y) = y. The idea is to find r > 0 and τ > 0 such that Kx is a

contraction on W = B(0, r) whenever x ∈ B(0, τ) = V . Then we can define

g(x) = [fixed point of Kx] .

Then when is Kx = −J2F (0,0)−1 [J1F (0,0)x +R(x, ⋅)] a contraction? We want to show that Kx does decrease

norm in an uniform way; then we need to show that Kx does map W →W .

Regarding the norm-decreasing property,

Kx(y1) −Kx(y2) = −J2F (0,0)−1 [J1F (0,0)x +R(x,y1)] + J2F (0,0)−1 [J1F (0,0)x +R(x,y2)] .

As they share a common term that cancel out, we can simplify the expression as

Kx(y1) −Kx(y2) = J2F (0,0)−1 [R(x,y2) −R(x,y1)] = J2F (0,0)−1 ∫
1

0

d

dt
R(x, (1 − t)y1 + y2)(y2 − y1) dt.

On the other hand, using the chain rule, we obtain

Kx(y1) −Kx(y2) = J2F (0,0)−1 ∫
1

0
J2F (x, (1 − t)y1 + ty2)(y2 − y1) dt.

This implies

∥Kx(y1) −Kx(y2)∥ ⩽ ∥J2F (0,0)−1∥∫
1

0
∥J2R(x, (1 − t)y1 + ty2)∥ ∣y2 − y1∣ dt

Then we can choose r > 0 such that max {∣x∣ , ∣y∣} < r implies

∥J2F (0,0−1∥ ⋅ ∥J2R(x,y)∥ ⩽ 1

2
⇒ ∣Kx(y1) −Kx(y2)∣ ⩽

1

2
∣y1 − y2∣ .

Then we still need to prove that the image is the subset of the space of domain. Particularly, we can make sure

that ∣Kx(0)∣ < r/2, which implies

∣Kx(y)∣ ⩽ ∣Kx(y) −Kx(0)∣ + ∣Kx(0)∣ <
1

2
∣y − 0∣ + r

2
⩽ r.

Choosing τ ∈ (0, r) such that ∣x∣ < τ ⇒ ∣Kx(0)∣ < r/2 suffices. Therefore Kx ∶ B(0, r) → B(0, r) is a contraction

whenever ∣x∣ < τ . Then by the contraction mapping principle, we have a unique fixed point.

The next step is to show that g is differentiable at 0 ∈ Rn with Jg(0) = −J2F (0,0)−1J1F (0,0).

g(x) =Kx(g(x)) = −J2F (0,0)−1 [J1F (0,0)x +R(x, g(x)] .

A manipulation of terms give

g(x) − g(0) − (−J2(0,0)−1J1F (0,0)x)
∥x∥

= J2F (0,0)−1R(x, g(x))
∥x∥

.

It suffices to show that R(x, g(x))/ ∥x∥ → 0 as x→ 0. But also note that

R(x, g(x))
∥x∥

= R(x, g(x))
∣(x, g(x))∣

⋅ ∣(x, g(x))∣
∥x∥

.

If we can show that g is Lipschitz, then the first component goes to zero as x → 0, as x → 0 implies (x, g(x)) →
(0,0), whereas the second term remains bounded. Then it suffices to show that ∣g(x)∣ ⩽ L ∥x∥ for some L ⩾ 0

65



around zero. We thus have

∣g(x)∣ = ∣Kx(g(x))∣

= ∣Kx(g(x)) −Kx(0)∣ + ∣Kx(0)∣

⩽ 1

2
∣g(x) − 0∣ + ∣J2F (0,0)−1(J1F (0,0)x +R(x,0)∣

⩽ 1

2
∣g(x)∣ + [∥J2F (0,0)−1∥ ∥J1F (0,0)∥ + ∥R(x,0)∥

∥x∥
] ∥x∥ ,

whereas the bracketed term is bounded above by L/2. This proves the remainder term is o(∥x∥), hence the

Jacobian is then

J = −J2(0,0)−1J1F (0,0)x.

The last step is to obtain the formula to obtain the formula for the Jacobian evaluated at not just zero but some

point near zero. To do so, J2F is continuous at (0,0) ∈ Rn × Rm and g is continuous at 0 ∈ Rn. Addition-

ally, J2F (0,0) is invertible, and GL(m), the set of invertible matrices, is an open subset of Rm×m. Therefore

J2F (x, g(x)) is invertible for small enough x. Running similar argument as step 2 gives the expression

Jg(x) = J2F (x, g(x))−1J1F (x, g(x)),

and that g is C1; by induction we can extend it to Ck.

Beginning of April 19, 2023

Today we will talk about the inverse function theorem and introduce the differential forms.

Theorem. (Inverse function theorem) Assume x0 ∈ U , and U is an open subset in Rm. Additionally, f maps

U to Rm, and is Ck for some k ∈ N, y0 = f(x0), and Jf(x0) is invertible. Then there exists neighborhoods

V including x0 and W including y0, and a unique function g ∶W → V such that

g = (f ∣V→W )−1
,

and g is a Ck mapping from W to V . Particularly, g(f(x)) = x for x ∈ V and f(g(y)) = y for y ∈W .

Proof. We hope to look at the graph of f , defined as

graph (f) = {(x,y) ∈ U ×Rm ∶ f(x) − y = 0} =∶ F (x,y) ∈ Rm.

Defining F ∶ U ×Rm → Rm, the graph of f is the level set of F at zero, or

graph (f) = F −1(0).

We then use the implicit function theorem on F . Particularly, we have y = f(x) on F −1(0); and we want to

invert this to obtain x = f−1(y) near (x0,y0).
Looking at J1F (x0,y0) = Jf(x0) as the Jacobian with respect to that x variables, the Jacobian is invertible

by assumption, therefore there exists neighborhoods V including x0 and W including y0 and a Ck function

g ∶W → V such that F (g(y,y) = 0 for every y ∈W . This shows that g is a right inverse for f , in that

0 = F (g(y),y) = f(g(y)) − y
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for all y ∈W . This shows that g is a right inverse for f on the restricted domain. It remains to show that g is a

left inverse for f . We apply the implicit function theorem again. Now consider G(x,y) = g(y)−x on G−1(0). We

note that G(x0,y0) = G(g(y0,y0) = 0, so (x0,y0) ∈ G−1(0); additionally J2G(x0,y0) = Jg(y0) = Jf(x0)−1, as

f ○ g = idW ⇒ Jf(g(y0))Jg(y0) = Imxm. Therefore there exists neighborhoods Ṽ including x0 and W̃ including

y0 and f̃ ∈ Ck(Ṽ ; W̃ ) such that for every x ∈ Ṽ we have 0 = G(x, f̃(x)) = g(f̃(x))−x⇒ g○ f̃ = idṼ . Furthermore,

as the two inverses must align, the proof is complete.

Remark. There is no way to turn this "local" inverse function theorem into a global one.

Example. Consider f ∶ R2 → R2 defined by

f(x, y) =
⎡⎢⎢⎢⎢⎣

ex cos y

ex sin y

⎤⎥⎥⎥⎥⎦
.

We have that

Jf(x, y) =
⎡⎢⎢⎢⎢⎣

ex cos y −ex sin y

ex sin y ex cos y

⎤⎥⎥⎥⎥⎦
,

which is invertible for all (x, y) ∈ R2; but f(x, y + 2π)f(x, y) for every (x, y) ∈ R2, so there does not exist a

global inverse.

And that would be the end of this set of lecture notes. In fact, Professor Leslie did not really give an in-depth intro

on the topic of differential forms, although it was arguably one of the most important sections. (He did talk about

it, but it wasn’t tested anyways so I didn’t really bother to take notes.) Nevertheless, his "lecture notes" follows

directly from the differential forms section of Pugh’s Real Mathematical Analysis book, so an interested reader can

instead redirect to Pugh.
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