
ECON 577 Homework 7

Stanley Hong

Due November 8, 2023

Remark. Throughout the assignment, I used Q to represent the risk-neutral measure. Albeit different from the

textbook representation, I believe they convey the same idea.

Problem: Shreve 2.2. Consider the stock price S3 in figure 2.3.1. (This is the same multiperiod binomial

model we have been discussing.)

(a) What is the distribution of S3 under the risk-neutral probabilities p̃ = 1
2

, q̃ = 1
2

?

(b) Compute EQ [S1], EQ [S2], and EQ [S3]. What is the average rate of growth of the stock price under

Q?

(c) Answer (a) and (b) again under the actual probabilities p = 2
3

, q = 1
3

.

Sol of parts (a)(b). P (X3 = 32) = P (X3 = 0.5) = 0.125, P (X3 = 8) = P (X3 = 2) = 0.375. Thus,

EQ [S1] =
1

2
S1(H) +

1

2
S1(T ) = 5, EQ [S2] =

25

4
, EQ [S3] =

125

16
.

The average rate of growth is 5/4 − 1 = 25% over a period.

Sol of part (c). P (X3 = 32) = 8
27

, P (X3 = 8) = 12
27

, P (X3 = 2) = 8
27

, P (X3 = 0.5) = 1
27

. (The numbers were not

simplified for convenience in future calculations.) Therefore,

E [S1] =
2

3
S1(H) +

1

3
S1(T ) = 6, E [S2] = 9, E [S3] = 13.5.

The average rate of growth is 3/2 − 1 = 50% over a period.
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Problem: Shreve 2.4. Toss a coin repeatedly. Assume the probability of head on each toss is 1
2

, as is the

probability of tail. Let Xj = 1 if the j-th toss results in a head, and Xj = −1 if the j-th toss results in a tail.

Consider the stochastic process M0,M1,M2,⋯ defined by M0 = 0 and

Mn =
n

∑
k=1

Xj , n ⩾ 1,

(This is called a symmetric random walk.)

(a) Using the properties of theorem 2.3.2, show that M0,M1,⋯ is a martingale.

(b) Let σ be a positive constant and for n ⩾ 0 define

Sn = eσMn ( 2

eσ + e−σ
)
n

.

Show that S0, S1,⋯ is a martingale. Note that even through Mn has no tendency to grow, the geo-

metric symmetric random walk eσMn has a tendency to grow as a result of putting a martingale into the

(convex) exponential function. We add the coefficient to "discount" the geometric symmetric random

walk, with the coefficient 2(eσ + e−σ)−1 < 1 unless σ = 0.

Sol of part (a). It suffices to show that Mn = En [Mn+1], and the proof follows by recursion. Specifically, we have

that

En [Mn+1] = En [Mn] +En [Xn+1]

=Mn + 0 =Mn,

which proves the statement.

Sol of part (b). Again, we wish to show Sn
?= En [Sn+1]. We see that

En [Sn+1] =
1

2
exp (σ(Mn + 1)) (

2

eσ + e−σ
)
n+1
+ 1

2
exp (σ(Mn − 1)) (

2

eσ + e−σ
)
n+1

= [1
2
( 2

eσ + e−σ
)
n+1
⋅ eσMn] (eσ + e−σ)

= ( 2

eσ + e−σ
)
n

eσMn = Sn,

as desired.
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Problem: Shreve 2.8. Consider an N -period binomial model.

(a) Let M0,⋯,Mn and M ′
0,⋯,M ′

N be martingales under the risk-neutral measure Q. Show that if MN =
M ′

N for every possible outcome of the sequence of coin tosses, then, for each n between 0 and N , we

have Mn =M ′
n for every possible outcome of the sequence of coin tosses.

(b) Let VN be the payoff at time N of some derivative security. This is a random variable that can de-

pend on all N coin tosses. Define recursively VN−1,⋯, V0 by the algorithm (1.2.16) (discounted payoff

algorithm) in chapter 1. Show that

V0,
V1

1 + r
,⋯, VN−1

(1 + r)N−1
,

VN

(1 + r)N

is a martingale under Q.

(c) Using the risk-neutral pricing formula, define

V ′n = EQ
n [

VN

(1 + r)N−n
] , n ∈ [N − 1]0 .

Show that

V ′0 ,
V ′1
1 + r

,⋯,
V ′N−1

(1 + r)N−1
,

VN

(1 + r)N

is a martingale.

(d) Conclude that Vn = V ′n for every n, i.e., the algorithm 1.2.16 gives the same derivative security prices

as the risk-neutral pricing formula.

Sol of part (a). Note that Mn = En [MN ] and M ′
n = En [M ′

N ]. As MN = M ′
N for every outcome, they have the

same expectations and therefore

Mn =M ′
n

for every possible outcome as well.

Sol of part (b). VN can be represented as the value process of a portfolio of stocks and bonds. Namely, it can be

achieved by V0 = X0. And theorem 2.4.5 states that the discounted wealth process ( Xn

(1+r)n )n is a martingale

under the risk-neutral measure Q. Thus the discounted value in ( Vn

(1+r)n )n is also a martingale under the same

measure.

Sol of part (c). We wish to show that

E [ V ′n
(1 + r)n

] = V ′0 .

The case where n = N is obvious. As for the general case, we see that

EQ
0 [

V ′n
(1 + r)n

] = EQ
0

⎡⎢⎢⎢⎢⎢⎣

EQ
n [ VN

(1+r)N−n ]
(1 + r)n

⎤⎥⎥⎥⎥⎥⎦
= EQ

0 [E
Q
n [VN ] (1 + r)−N ] = V ′0 .

Sol of part (d). Given that the process in (b) is a martingale, the process in (c) is a martingale, and that VN = V ′N
(as they are defined the same), by (a) it follows that Vn = V ′n.
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