ECON 577 Homework 7

Stanley Hong

Due November 8, 2023

Remark. Throughout the assignment, I used \mathbb{Q} to represent the risk-neutral measure. Albeit different from the textbook representation, I believe they convey the same idea.

Problem: Shreve 2.2. Consider the stock price S_3 in figure 2.3.1. (This is the same multiperiod binomial model we have been discussing.)

(a) What is the distribution of S_3 under the risk-neutral probabilities $\tilde{p} = \frac{1}{2}$, $\tilde{q} = \frac{1}{2}$?

(b) Compute $\mathbb{E}^{\mathbb{Q}}[S_1]$, $\mathbb{E}^{\mathbb{Q}}[S_2]$, and $\mathbb{E}^{\mathbb{Q}}[S_3]$. What is the average rate of growth of the stock price under \mathbb{Q} ?

(c) Answer (a) and (b) again under the actual probabilities $p = \frac{2}{3}$, $q = \frac{1}{3}$.

Sol of parts (a)(b). $P(X_3 = 32) = P(X_3 = 0.5) = 0.125$, $P(X_3 = 8) = P(X_3 = 2) = 0.375$. Thus,

$$\mathbb{E}^{\mathbb{Q}}[S_1] = \frac{1}{2}S_1(H) + \frac{1}{2}S_1(T) = 5, \quad \mathbb{E}^{\mathbb{Q}}[S_2] = \frac{25}{4}, \quad \mathbb{E}^{\mathbb{Q}}[S_3] = \frac{125}{16}$$

The average rate of growth is 5/4 - 1 = 25% over a period.

Sol of part (c). $P(X_3 = 32) = \frac{8}{27}$, $P(X_3 = 8) = \frac{12}{27}$, $P(X_3 = 2) = \frac{8}{27}$, $P(X_3 = 0.5) = \frac{1}{27}$. (The numbers were not simplified for convenience in future calculations.) Therefore,

$$\mathbb{E}[S_1] = \frac{2}{3}S_1(H) + \frac{1}{3}S_1(T) = 6, \quad \mathbb{E}[S_2] = 9, \quad \mathbb{E}[S_3] = 13.5.$$

The average rate of growth is 3/2 - 1 = 50% over a period.

Problem: Shreve 2.4. Toss a coin repeatedly. Assume the probability of head on each toss is $\frac{1}{2}$, as is the probability of tail. Let $X_j = 1$ if the *j*-th toss results in a head, and $X_j = -1$ if the *j*-th toss results in a tail. Consider the stochastic process M_0, M_1, M_2, \cdots defined by $M_0 = 0$ and

$$M_n = \sum_{k=1}^n X_j, \quad n \ge 1$$

(This is called a *symmetric random walk*.)

- (a) Using the properties of theorem 2.3.2, show that M_0, M_1, \dots is a martingale.
- (b) Let σ be a positive constant and for $n \ge 0$ define

$$S_n = e^{\sigma M_n} \left(\frac{2}{e^{\sigma} + e^{-\sigma}}\right)^n$$

Show that S_0, S_1, \cdots is a martingale. Note that even through M_n has no tendency to grow, the *geometric symmetric random walk* $e^{\sigma M_n}$ has a tendency to grow as a result of putting a martingale into the (convex) exponential function. We add the coefficient to "discount" the geometric symmetric random walk, with the coefficient $2(e^{\sigma} + e^{-\sigma})^{-1} < 1$ unless $\sigma = 0$.

Sol of part (a). It suffices to show that $M_n = \mathbb{E}_n [M_{n+1}]$, and the proof follows by recursion. Specifically, we have that

$$\mathbb{E}_n [M_{n+1}] = \mathbb{E}_n [M_n] + \mathbb{E}_n [X_{n+1}]$$
$$= M_n + 0 = M_n,$$

which proves the statement.

Sol of part (b). Again, we wish to show $S_n \stackrel{?}{=} \mathbb{E}_n [S_{n+1}]$. We see that

$$\mathbb{E}_n \left[S_{n+1} \right] = \frac{1}{2} \exp\left(\sigma(M_n + 1)\right) \left(\frac{2}{e^{\sigma} + e^{-\sigma}}\right)^{n+1} + \frac{1}{2} \exp\left(\sigma(M_n - 1)\right) \left(\frac{2}{e^{\sigma} + e^{-\sigma}}\right)^{n+1}$$
$$= \left[\frac{1}{2} \left(\frac{2}{e^{\sigma} + e^{-\sigma}}\right)^{n+1} \cdot e^{\sigma M_n}\right] (e^{\sigma} + e^{-\sigma})$$
$$= \left(\frac{2}{e^{\sigma} + e^{-\sigma}}\right)^n e^{\sigma M_n} = S_n,$$

as desired.

Problem: Shreve 2.8. Consider an *N*-period binomial model.

- (a) Let M_0, \dots, M_n and M'_0, \dots, M'_N be martingales under the risk-neutral measure \mathbb{Q} . Show that if $M_N = M'_N$ for every possible outcome of the sequence of coin tosses, then, for each *n* between 0 and *N*, we have $M_n = M'_n$ for every possible outcome of the sequence of coin tosses.
- (b) Let V_N be the payoff at time N of some derivative security. This is a random variable that can depend on all N coin tosses. Define recursively V_{N-1}, \dots, V_0 by the algorithm (1.2.16) (discounted payoff algorithm) in chapter 1. Show that

$$V_0, \frac{V_1}{1+r}, \cdots, \frac{V_{N-1}}{(1+r)^{N-1}}, \frac{V_N}{(1+r)^N}$$

is a martingale under \mathbb{Q} .

(c) Using the risk-neutral pricing formula, define

$$V'_{n} = \mathbb{E}_{n}^{\mathbb{Q}}\left[\frac{V_{N}}{(1+r)^{N-n}}\right], n \in [N-1]_{0}$$

Show that

$$V_0', \frac{V_1'}{1+r}, \cdots, \frac{V_{N-1}'}{(1+r)^{N-1}}, \frac{V_N}{(1+r)^N}$$

is a martingale.

(d) Conclude that $V_n = V'_n$ for every *n*, i.e., the algorithm 1.2.16 gives the same derivative security prices as the risk-neutral pricing formula.

Sol of part (a). Note that $M_n = \mathbb{E}_n[M_N]$ and $M'_n = \mathbb{E}_n[M'_N]$. As $M_N = M'_N$ for every outcome, they have the same expectations and therefore

 $M_n = M'_n$

for every possible outcome as well.

Sol of part (b). V_N can be represented as the value process of a portfolio of stocks and bonds. Namely, it can be achieved by $V_0 = X_0$. And theorem 2.4.5 states that the discounted wealth process $(\frac{X_n}{(1+r)^n})_n$ is a martingale under the risk-neutral measure \mathbb{Q} . Thus the discounted value in $(\frac{V_n}{(1+r)^n})_n$ is also a martingale under the same measure.

Sol of part (c). We wish to show that

$$\mathbb{E}\left[\frac{V_n'}{(1+r)^n}\right] = V_0'.$$

The case where n = N is obvious. As for the general case, we see that

$$\mathbb{E}_{0}^{\mathbb{Q}}\left[\frac{V_{n}'}{(1+r)^{n}}\right] = \mathbb{E}_{0}^{\mathbb{Q}}\left[\frac{\mathbb{E}_{n}^{\mathbb{Q}}\left[\frac{V_{N}}{(1+r)^{N-n}}\right]}{(1+r)^{n}}\right]$$
$$= \mathbb{E}_{0}^{\mathbb{Q}}\left[\mathbb{E}_{n}^{\mathbb{Q}}\left[V_{N}\right](1+r)^{-N}\right] = V_{0}'.$$

Sol of part (d). Given that the process in (b) is a martingale, the process in (c) is a martingale, and that $V_N = V'_N$ (as they are defined the same), by (a) it follows that $V_n = V'_n$.