Chapter 2 - Matrices

Square matrix:

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}$$

Main diagonal: $a_{11}, a_{22}, ..., a_{nn}$; trace: $\sum_{i=1}^{n} a_{ii}$ Symmetric: $A^{T} = A$; skew-symmetric: $A^{T} = -A$ Linear equation system Ax = b (homogeneous if b = 0) Row-echelon matrix: (1) all zero rows at the bottom, (2) all other rows begin with leading "1", (3) leading "1"'s occur strictly to the right of the leading "1"'s above Rank: no. of nonzero rows in row-echelon form Invertible matrix: $AA^{-1} = A^{-1}A = I_n$

$$[A | I_n] \sim \dots \sim [I_n | A^{-1}]$$
$$(A^{-1})^{-1} = A (AB)^{-1} = B^{-1}A^{-1} (A^T)^{-1} = (A^{-1})^T$$

Elementary matrix:

$$P_{12} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} M_1(k) = \begin{bmatrix} k & 0 \\ 0 & 1 \end{bmatrix} A_{12}(k) = \begin{bmatrix} 1 & 0 \\ k & 1 \end{bmatrix}$$
$$M_i(k)^{-1} = M_i(k^{-1}) P_{ij}^{-1} = P_{ij} Aij(k)^{-1} = A_{ij}(-k)$$

LU factorization:

$$E_k E_{k-1} \dots E_2 E_1 A = U \Rightarrow A = E_1^{-1} E_2^{-1} \dots E_k^{-1} U = L U$$

Chapter 3 - Determinants

Triangular matrix determinant:

$$\det(A) = \prod_{i=1}^{n} a_{ii}$$

Matrix determinant rules: Interchanging rows $\Rightarrow -\det(A)$, multiplying by scalar $\Rightarrow k\det(A)$, adding rows $\Rightarrow \det(A)$, $\det(AB) = \det(A)\det(B)$, $\det(A^{-1}) = (\det(A))^{-1}$

Cofactor: $C_{ij} = (-1)^{i+j} M_{ij}$, M_{ij} is the determinant obtained from deleting row *i* and col *j*

Cofactor expansion theorem:

$$\det(A) = \sum_{k=1}^{n} a_{ij} C_{ik} = \sum_{k=1}^{n} a_{kj} C_{kj}$$

Adjoint method of inverse:

$$A^{-1} = (\det(A))^{-1} \operatorname{adj}(A), \ \operatorname{adj}(A)_{ij} = C_{ji}$$

Cramer's rule: solution to Ax = b is $(x_1, ..., x_n)$, where

$$x_{k} = \frac{\det(B_{k})}{\det(A)}, \quad B_{k} = \begin{bmatrix} a_{11} & \dots & b_{1} & \dots & a_{1n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{n1} & \dots & b_{n} & \dots & a_{nn} \end{bmatrix}$$

Chapter 4 - Vector spaces Vector space: closure under "+" and "×"

$$\forall u, v \in V, \ u + v \in V; \ \forall k \in \mathbb{R}, \forall v \in V, \ kv \in V$$

Subspace: $S \neq \emptyset$, $S \subset V$, S vector space under "+" and "×" **Nullspace:** nullspace(A) = {x : Ax = 0} **Spanning set:** { $v_1, ..., v_k$ } **spans** V if

$$\forall v \in V, v = c_1 v_1 + \ldots + c_k v_k$$

Linear dependency: $\{v_1, ..., v_k\}$ linearly dependent if

$$c_1v_1 + \ldots + c_kv_k = 0$$

for some nonzero $(c_1, ..., c_k)$ If $W[f_1, f_k] \neq 0$ at some $x_0 \in I$ then

If $W[f_1, ..., f_k] \neq 0$ at some $x_0 \in I$, then $\{f_1, ..., f_k\}$ linearly independent on I. Namely,

$$W = \begin{bmatrix} f_1(x) & \dots & f_k(x) \\ \vdots & \ddots & \vdots \\ f_1^{(k-1)}(x) & \dots & f_k^{(k-1)}(x) \end{bmatrix}$$

Basis: $\{v_1, ..., v_k\}$ span V, and are linearly independent **Dimension:** no. of vectors in any basis for V $\dim [V] = n \Rightarrow$ set of > n vectors linearly dependent, set of nlinearly independent vectors in V is a basis for V**Component rel. to ordered basis** $B = \{v_1, ..., v_k\}$:

$$\begin{bmatrix} v \end{bmatrix}_B = \begin{bmatrix} c_1 \\ \vdots \\ c_k \end{bmatrix} \Rightarrow c = c_1 v_1 + \ldots + c_k v_k$$

Change of basis matrix $B = \{v_1, ..., v_k\} \rightarrow \{w_1, ..., w_k\}$:

$$P_{C \leftarrow B} = \begin{bmatrix} v_1 \end{bmatrix}_C \dots \begin{bmatrix} v_n \end{bmatrix}_C$$
$$\begin{bmatrix} v \end{bmatrix}_C = P_{C \leftarrow B} \begin{bmatrix} v \end{bmatrix}_D$$

Row space: row vectors of *A* that span a subspace of \mathbb{R}^n **Column space**: col vectors of *A* that span a subspace of \mathbb{R}^m Set of col vectors of *A* corresponding to col vectors containing leading ones in row-echelon form of *A* is a basis for colspace **Rank-nullity theorem**:

$$\operatorname{rank}(A) + \operatorname{nullity}(A) = n$$

Invertible matrix theorem: A invertible $\equiv A^T$ invertible $\equiv Ax = b$ unique solution $\equiv Ax = 0$ trivial solution $\equiv \operatorname{rank}(A) = n$ $\equiv \operatorname{nullity}(A) = 0 \equiv \operatorname{nullspace}(A) = \{0\} \equiv \operatorname{colspace}(A) = \mathbb{R}^n \equiv \operatorname{rowspace}(A) = \mathbb{R}^n \equiv \operatorname{cols/rows}$ of A form a basis for \mathbb{R}^n

Chapter 6 - Linear transformation

Linear transformation: mapping with linearity properties

$$\forall u, v \in V, \ T(u+v) = T(u) + T(v)$$
$$\forall k \in \mathbb{R}, \forall v \in V, \ T(cv) = kT(v)$$

Matrix of transformation: $m \times n$ matrix corresponding to the linear transformation $T : \mathbb{R}^n \to \mathbb{R}^m : T(x) = Ax$

$$A = \begin{bmatrix} T(e_1) & \dots & T(e_n) \end{bmatrix}$$

Transformation of \mathbb{R}^2 : reflection, shear, stretch

$$R_x = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \quad R_y = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \quad R_{xy} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
$$LS_x = \begin{bmatrix} k & 0 \\ 0 & 1 \end{bmatrix} \quad LS_y = \begin{bmatrix} 1 & 0 \\ 0 & k \end{bmatrix} \quad S_x = \begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix} \quad S_y = \begin{bmatrix} 1 & 0 \\ k & 1 \end{bmatrix}$$

Transformation with invertible matrix:

$$T(v) = Av = E_1^{-1}...E_n^{-1}v$$

Kernel: Ker $(T) = \{v \in V : T(v) = 0\}$ Range: Rng $(T) = \{T(v) : v \in V\}$ For $T : \mathbb{R}^n \to \mathbb{R}^m$, with T(v) = Av,

$$\operatorname{Ker}(T) = \operatorname{nullspace}(A) \subset \mathbb{R}^n \operatorname{Rng}(T) = \operatorname{colspace}(A) \subset \mathbb{R}^m$$

General rank-nullity theorem: for $T: V \rightarrow W$,

$$\dim [\operatorname{Ker}(T)] + \dim [\operatorname{Rng}(T)] = \dim [V]$$

Composition of $T_1: U \to V$ and $T_2: V \to W$:

$$(T_2T_1)(u) = T_2(T_1(u))$$

LT is **one-to-one** if $v_1 \neq v_2 \Rightarrow T(v_1) \neq T(v_2)$

$$T$$
 one-to-one $\Leftrightarrow \text{Ker}(T) = \{0\}$

LT is **onto** if every $w \in W$ is the image of at least one $v \in V$

$$T \text{ onto } \Leftrightarrow \operatorname{Rng}(T) = W$$

If $T: V \rightarrow W$ is both one-to-one and onto: **inverse LT**

$$T^{-1}(w) = v \Leftrightarrow w = T(v)$$

Isomorphism: $V \cong W$ if exists T that is 1-1 and onto **Matrix representation** relative to bases B and C, for $B = \{v_1, ..., v_n\}$ and $C = \{w_1, ..., w_m\}$:

$$[T]_B^C = [[T(v_1)]_C \quad \dots \quad [T(v_n)]_C]$$

Identity of matrix representation:

$$[T(v)]_{C} = [T]_{B}^{C} [v]_{B} [T_{2}T_{1}]_{A}^{C} = [T_{2}]_{B}^{C} [T_{1}]_{A}^{B}$$

Chapter 7 - Eigenvalues and eigenvectors **Eigenvalue**: $Av = \lambda v$ has nontrivial solutions vEigenvalue/eigenvector problem:

$$\det(A - \lambda I) = 0 \Rightarrow (A - \lambda_i I)v_i = 0$$

Characteristic polynomial: $p(\lambda) = \det(A - \lambda I)$

$$p(\lambda) = (-1)^n (\lambda - \lambda_1)^{m_1} \dots (\lambda - \lambda_k)^{m_k}$$

Algebraic multiplicity: $m_1, ..., m_k$ Eigenspace: space spanned by v_i for each λ_i Defective matrix: $n \times n$ matrix with < n l.i. eigenvectors

A nondefective $\Leftrightarrow \dim [E_i] = m_i \ \forall 1 \leq i \leq k$

A similar to *B* if exists *S* such that $B = S^{-1}AS$ Similar matrices have the same eigenvalues Diagonalizable: $n \times n$ matrix similar to a diagonal matrix Chapter 1 - First-order differential equations Linear differential equation of order *n*:

$$a_0(x)y^{(n)} + a_1(x)y^{(n-1)} + \dots + a_n(x)y = F(x)$$

Existence and uniqueness theorem: let f(x, y) continuous on $R : [a,b] \times [c,d]$. If $\partial f / \partial y$ continuous in R, then there exists an interval I

Slope field: sketch of dy/dx = f(x, y) at different points **Separable differential equation:**

$$p(y)\frac{dy}{dx} = q(x) \Rightarrow \int p(y) \, \mathrm{d}y = \int q(x) \, \mathrm{d}x + C$$

Integrating factor:

$$\frac{dy}{dx} + p(x)y = q(x) \Rightarrow I(x) = \exp\left(\int p(x) \, \mathrm{d}x\right)$$

Chapter 8 - Linear differential equations of order nDerivative operator D(f) = f':

$$Ly = D^n y + a_1 D^{n-1} y + \dots + a_{n-1} Dy + a_n y$$

General solution of homogeneous differential equations:

$$y(x) = c_1 y_1(x) + \dots + c_n y_n(x)$$

Solving differential equations Ly = F: Auxiliary equation:

$$P(r) = r^{n} + a_{1}r^{n-1} + \dots + a_{n-1}r + a_{n} = (r - r_{1})^{m_{1}} \dots (r - r_{k})^{m_{k}} = 0$$

 r_i real: $e^{r_i x}, xe^{r_i x}, ...$ r_j complex: $e^{ax} \cos bx, xe^{ax} \cos bx, ..., e^{ax} \sin bx, xe^{ax} \sin bx, ...$ Annihilator: $A(D)F = 0 \Rightarrow P(D)y = 0$

$$A(D) = (D - a)^{k+1} \Leftarrow (a_0 + a_1 x \dots + a_k x^k) e^{ax}$$
$$A(D) = (D^2 - 2aD + a^2 + b^2)^{k+1} \Leftarrow$$
$$(a_0 + \dots + a_k x^k) e^{ax} \cos bx + (b_0 + \dots + b_k x^k) e^{ax} \sin bx$$