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0 - Preface stanle

0 Preface

This notebook serves as notes for Stephen Goode and Scott Annin’s Differential Equations and Linear Algebra, 4th

edition. This book serves as the primary textbook for undergraduate linear algebra and differential equations, in-

cluding the class that I am currently in, MATH 225. My course, as it focuses more on linear algebra than differential

equations, covers a majority of chapters 1-4 and some of chapters 6,7,8, and 9. Again, if I have time, I will come

back and make up for the sections not mentioned by my professor.

It is worth mentioning that my (fairly garbage) LaTeX skills does not allow me to draw any sorts of graphs or figures,

so let’s stick with the numbers and letters for now.

Welcome.

Stanley Hong

April 13, 2022
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1 First-Order Differential Equations

1.1 Differential Equations Everywhere

Definition 1.1: Differential equation

A differential equation is any equation that involves one or more derivatives of an unknown function.

Differential equations in which the unknown function depends on a single independent variable are called

ordinary differential equations. Differential equations that involves partial derivatives of the unknown

function of two independent variables are called partial differential equations.

The highest derivative that occurs in the differential equation is called the order of the differential equation.

The Malthusian model for the growth of a population assumes that the rate of growth is proportional to the

population present at that time. The growth model can be described as

dP

dt
= kP,

where k is a constant. It follows that

P (t) = Cekt,

where C is an arbitrary constant. The above formula is called the general solution to the differential equation. To

determine a particular solution, we also need an initial condition which specifies the appropriate value of C. For

example, the initial condition P (0) = P0 and P (0) = Cek⋅0 = C gives C = P0, and the particular solution becomes

P (t) = P0e
kt.

The Malthusian model only predicts certain population, like bacteria. Its more general population alternative,

the logistic population model, assumes a constant birthrate B0 and a death rate D0 that is proportional to the

population. The resulting differential equation becomes

dP

dt
= (B0 −D0P )P,

where B0 and D0 are positive constants. The logistic population model has a carrying capacity of the population,

given by C = B0/D0.

Now consider another example: the rate of change of temperature of an object. We know from thermodynamics

that if the temperature of the object is hopper than that of the room, then the object will begin to cool, and vice

verse. We also expect that the major factor governing the rate of cooling is the difference in temperature. The

Newton’s law of cooling arises from this. Let T (t) denote the temperature of the object at time t, and let Tm(t)
denote the temperature of the surrounding medium. Hence,

dT

dt
= −k(T − Tm) ⇒ T (t) = Tm +Ce−kt,

where c is a constant. Newton’s law of cooling therefore predicts that as t→∞, T → Tm.

Of course, there are more examples of differential equations, like the initial trajectory problem of motion, and the

different types of growth models. We won’t go over them one by one, but this should give a sense of how common

differential equations are in our daily lives.
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1.2 Basic Ideas and Terminology

We now formalize the ideas introduced in the examples in last section.

Any differential equation of order n can be written in the form

G(x, y, y′, y′′, ..., y(n)) = 0,

where y(n) denotes the n-th derivative of y with respect to x.

Definition 1.2: Linear differential equations

A differential equation that can be written in the form

a0(x)y(n) + a1(x)y(n−1) + ... + an(x)y = F (x),

where a0, a1, ..., an and F are functions of x only, is called a linear differential equation of order n.

A differential equation that does not satisfy this definition is called a nonlinear differential equation.

Example 1.3. The equation y′′′ + e3xy′′ + x3y′ + (cosx)y = lnx is a linear differential equation of order 3,

whereas y′′ + y2 = 0 is a nonlinear differential equation of order 2.

Definition 1.4: Solution to differential equation

A function y = f(x) that is n times differentiable on an interval I is called a solution to the differential

equation on I if the substitution of y = f(x), y′ = f ′(x), ... reduces the differential equation to an identity for

all x ∈ I. In this case, we say that y = f(x) satisfies the differential equation.

Example 1.5. We want to verify that sin(xy) + y2 − x = 0 defines a solution to

dy

dx
= 1 − y cos(xy)
x cos(xy) + 2y

.

To do this, we apply rules of implicit differentiation.

cos(xy) (y + xdy
dx

) + 2y
dy

dx
− 1 = 0⇒ dy

dx
[x cos(xy) + 2y] = 1 − y cos(xy),

and moving terms gives the original expression as required.

Definition 1.6: General solution

A solution to an n-th order differential equation on an interval I is called the general solution on I if it

satisfies the following conditions:

(1) The solution contains n constants c1, c2, ..., cn.

(2) All solutions can be obtained by assigning appropriate values to the constants.
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On the other hand, a solution to a differential equation is called a particular solution if it does not contain any

arbitrary constants not present in the differential equation itself.

Now we define the initial-value problem.

Definition 1.7: Initial-value problem

A n-th order differential equation together with n auxiliary conditions of the form

y(x0) = y0, y′(x0) = y1, ..., y(n−1)(x0) = yn−1,

where y0, y1, ..., yn−1 are constants, is called an initial-value problem.

Theorem 1.8

Let a1, a2, ..., an, F be functions that are continuous on an interval I. Then, for any x0 ∈ I, the initial-value

problem

y(n) + a1(x)y(n−1) + ... + an−1(x)y′ + an(x)y = F (x)

y(x0) = y0, y′(x0) = y1, ..., y(n−1)(x0) = yn−1

has a unique solution on I.

Proof. This is a fundamental result of differential equations, and we will prove it later in chapter 8.

1.3 The Geometry of First-Order Differential Equations

Definition 1.9: Solution curve

The graph of any solution to the differential equation dy
dx

= f(x, y) is called a solution curve.

Consider an initial-value problem
dy

dx
= f(x, y), y(x0) = y0.

Geometrically, we are interested in finding the particular solution curve to the differential equation that passes

through (x0, y0) in the Cartesian plane. The following questions naturally arise:

(1) Existence: Does the initial-value problem have any solutions?

(2) Uniqueness: If the answer to (1) is yes, does the initial-value problem have only one solution?

Theorem 1.10: Existence and Uniqueness Theorem

Let f(x, y) be a function that is continuous on the rectangle

R = {(x, y) ∶ a ⩽ x ⩽ b, c ⩽ y ⩽ d} .

Suppose further that ∂f
∂y

is continuous in R, then for any interior point (x0, y0) in R, there exists an interval

I containing x0 such that the initial-value problem has a unique solution for x ∈ I.
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Proof. Geometrically, if f(x, y) satisfies the hypotheses of the existence and uniqueness theorem in R, then

throughout that region the solution curves of the differential equation dy
dx

= f(x, y) cannot intersect, or else it

would imply the existence of more than one solution.

Example 1.11. The initial-value problem

dy

dx
= 3xy

1
3 y(0) = a

has a unique solution whenever a ≠ 0, but it does not have a unique solution when a = 0. Consider f(x, y) =
3xy1/3, ∂f/∂y = xy−2/3. f is continuous in the xy-plane, but ∂f/∂y is continuous at all y ≠ 0. Hence, it

is clear that if a ≠ 0, we can draw a rectangle containing (0, a) that does not intersect the x-axis, so the

Existence and Uniqueness theorem is satisfied. However, we cannot do that for a = 0, hence the initial-value

problem have more than one solution: consider y(x) = 0 and y(x) = x3.

Definition 1.12: Slope field

The slope field for a differential equation dy
dx

= f(x, y) is the sketch of the value of f(x, y) at several points

and drawing through each of the corresponding points in the xy-plane as their slopes.

The slope field can be sketched with three important steps:

(1) Isoclines: for the differential equation dy
dx

= f(x, y), the function f(x, y) determines the regions in the xy-plane

where the slope is positive and where it’s negative. The family of curves where f(x, y) = k are called isoclines

of the differential equation.

(2) Equilibrium solutions: any solution to the differential equation of the form y(x) = y0 where y0 is a constant is

called an equilibrium solution to the differential equation. The corresponding solution curve is a line parallel

to the x-axis. Equilibrium solutions are given by any constant values of y for which f(x, y) = 0.

(3) Concavity changes: differentiating the differential equation with respect to x gives an expression for d2y/dx2

in terms of x and y, which can be useful in determining the behavior of the concavity of the solution curves.

1.4 Separable Differential Equations

Definition 1.13: Separable differential equation

A first-order differential equation is separable if it can be written in the form

p(y)dy
dx

= q(x).

Theorem 1.14

If p(y) and q(x) are continuous, then the separable differential equation has the general solution

∫ p(y) dy = ∫ q(x) dx +C,
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where C is an arbitrary constant.

Proof.

p(y)dy
dx

= q(x) ⇒ d

dx
(∫ p(y) dy) = q(x).

Integration both sides of this equation with respect to x yields

∫ p(y) dy = ∫ q(x) dx +C.

Example 1.15. We want to find all solutions to y′ = −2xy2. We do this by separating variable:

y−2dy = −2xdx.

Integrating both sides gives

−y−1 = −x2 +C ⇒ y(x) = 1

x2 −C .

However, we can see by inspection that y(x) = 0 is also a solution to the differential equation, but we did

not count it in when we divided by y in separating the variables. Thus, the solutions are

y(x) = 1

x2 − c and y(x) = 0.

1.5 Some Simple Population Models

We consider in detail the models of population growth, namely Malthusian and Logistic models.

Recall that the Malthusian growth model is defined by the equation

P (t) = P0e
kt,

where P0 denotes the population at t = 0. This law predicts an exponential increase the population with time.

The time taken for population to double is the doubling time. This is the time, td, when P (td) = 2P0. Substituting

gives 2P0 = P0e
ktd . Dividing both sides by P0 and taking logarithms give

ktd = ln 2⇒ td =
1

k
ln 2.

The general logistic model describes the rate of change of population by

dP

dt
= [B(t) −D(t)]P,

where B(t) and D(t) denote the birth rate and death rate per individual, respectively. The exponential law corre-

sponds to the case when B(t) = k and D(t) = 0. Considering the death rate per individual is directly proportional

to the population, the differential equation gives

dP

dt
= (B0 −D0P )P,
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where B0 and D0 are positive constants. It is useful to write the differential equation in the equivalent form

dP

dt
= r (1 − P

C
)P,

where r = B0 and C = B0

D0
. The constant C is the carrying capacity of the population. If P < C, then dP

dt
> 0 and the

population increases. If P > C, then dP
dt

< 0 and the population decreases.

Considering the analytical solution to the logistic model, we have

∫
C

P (C − P ) dP = rt +C1 ⇒ ln ∣ P

C − P ∣ = rt +C1.

Redefining the integration constant yields

P

C − P = C2e
rt ⇒ P (t) = C2Ce

rt

1 +C2ert
= C2C

C2 + e−rt
.

Imposing the initial condition P (0) = P0 gives C2 = P0/(C − P0), which gives

P (t) = CP0

P0 + (C − P0)e−rt
.

1.6 First-Order Linear Differential Equations

Definition 1.16: First-order linear differential equation

A differential equation that can be written in the form

a(x)dy
dx

+ b(x)y = r(x),

where a(x), b(x) and r(x) are functions defined on an interval (a, b), is called a first-order linear differen-

tial equation.

We assume that a(x) ≠ 0 on (a, b), so that we can divide both sides by a(x) to obtain the standard form

dy

dx
+ p(x)y = q(x).

The idea behind the solution is to rewrite the differential equation in the form

d

dx
[g(x, y)] = F (x)

for an appropriate function g(x, y). We multiply the function

I(x) = e∫ p(x) dx,

called the integration factor for the differential equation, as it enables us to reduce the differential equation.

Example 1.17. We want to solve the initial-value problem

dy

dx
+ xy = xex

2
/2 y(0) = 1.

9
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An appropriate integrating factor is I(x) = ex2
/2, and multiplying the given differential equation by I yields

d

dx
(ex

2
/2y) = xex

2

.

Integrating both sides with respect to x, we obtain

ex
2
/2y = 1

2
ex

2

+C ⇒ y(x) = e−x
2
/2 (1

2
ex

2

+C) .

Substituting the initial condition y(0) = 1 gives c = 1
2
, thus the required particular solution is

y(x) = 1

2
e−x

2
/2(ex

2

+ 1) = 1

2
(ex

2
/2 + e−x

2
/2) = cosh(x

2

2
).
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2 Matrices and Systems of Linear Equations

Any equation of the form

a1x1 + a2x2 + ... + anxn = b

in constants a1, a2, ..., an, b and unknowns x1, x2, ..., xn is called a linear equation. Often, several linear equations

need to be considered at once, in which case we refer to a system of linear equations. The next two chapters are

concerned with giving a introduction to matrix theory and the solution techniques for such systems.

2.1 Matrices: Definitions and Notation

Well, get ready for twenty consecutive definitions. It is a lot, but fortunately the concepts are not as difficult as

other sets of concepts. Yes, I’m talking about you, metric spaces :)

Definition 2.1: Matrices

An m × n matrix is a rectangular array of numbers arranged in m horizontal rows and n vertical columns.

Matrices are usually denoted by upper case letters, such as A and B. The entries in the matrix are called the

elements of the matrix.

A general m × n matrix A is written as

A = [aij] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 ... a1n

a21 a22 ... a2n

⋮ ⋮ ⋮
am1 am2 ... amn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Definition 2.2: Equivalent matrices

Two matrices A and B are equal, written A = B, if they both have the same size m×n, and all corresponding

elements have the matrices are equal: aij = bij for all i and j with 1 ⩽ i ⩽m and 1 ⩽ j ⩽ n.

Definition 2.3: Row and column vectors

A 1 × n matrix is called a row n-vector. An n × 1 matrix is called a column n-vector. The elements of a row

or column n-vector are called the components of the vector.

Definition 2.4: Transpose

Interchanging the row vectors and column vectors in an m × n matrix A gives an n ×m matrix, called the

transpose of A, denoted as AT . The ij-th element of AT , denoted aTij , is given by

aTij = aji.

11
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Definition 2.5: Square matrices

An n × n matrix is called a square matrix. If a is a square matrix, then the elements aii, 1 ⩽ i ⩽ n, make up

the main diagonal of the matrix. The sum of the main diagonal elements of an n × n matrix A is called the

trace of A and is denoted tr(A).

Definition 2.6: Types of matrices

An n × n matrix A = [aij] is said to be lower triangular if aij = 0 whenever i < j, and it is said to be upper

triangular if aij = 0 whenever i > j. An n × n matrix D = [dij] is said to be a diagonal matrix if dij = 0

whenever i ≠ j. Note that a matrix D is a diagonal matrix if and only if D is simultaneously upper and lower

triangular, and it can be represented in the compact form

D = diag(d1, d2, ..., dn).

Definition 2.7: Symmetric matrix

A square matrix A satisfying AT = A is called a symmetric matrix.

If A = [aij], then we let −A denote the matrix with elements −aij . A square matrix A satisfying AT = −A is

called a skew-symmetric (or anti-symmetric) matrix.

Definition 2.8: Matrix functions

An m×n matrix function A is a rectangular array with m rows and n columns whose elements are functions

of a single real variable t. The matrix function is only defined for real values of t such that all elements in

A(t) assume a well-defined value.

An n × 1 matrix function is called a column n-vector function.

2.2 Matrix Algebra

After having a general idea of a matrix, the next step is to develop the algebra of matrices. We assume that all

elements of the matrices are real or complex numbers.

Definition 2.9: Addition

If A and B are both m × n matrices, we define addition, or the sum, of A and B, denoted by A +B, to be

the m × n matrix A +B = [aij + bij].

Matrix addition is commutative and associative.

12
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Definition 2.10: Scalar multiplication

If A is an m × n matrix and s is a scalar, we define scalar multiplication of s and A, denoted by sA, be the

m × n matrix sA = [saij].

Scalar multiplication is associative and distributive, both over matrices and over scalars.

Definition 2.11: Subtraction

If A and B are both m × n matrices, we define subtraction of A and B, denoted A −B, be the m × n matrix

A −B = A + (−1)B = [aij − bij].

The general definition of matrix multiplication can be built up in three stages. Matrix multiplication may seem

unapparent at first glance, but later in section 6.5, the application of matrix multiplication in linear transformations

will be more transparent. Get ready, and we are going to accelerate.

Case 1: product of a row n-vector and a column n-vector. Let a be a row n-vector, and let x be a column

n-vector. Their matrix product ax is the 1 × 1 matrix whose single element is obtained by taking the dot product of

a and xT . Mathematically,

ax = [a1 a2 ... an]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

⋮
xn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= [a1x1 + x2x2 + ... + anxn] .

Example 2.12. If a = [−8 3 1 2] and x =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

4

7

−5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, then

ax = [(−8)(1) + (3)(4) + (1)(7) + (2)(−5)] = [−13] .

Case 2: product of an m ×n matrix and a column n-vector. If A is an m × n matrix and x is a column n-vector,

then the product Ax is defined to be the m × 1 matrix whose i-th element is obtained by taking the dot product of

the i-th row vector of A with x. Mathematically,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 ... a1n

a21 a22 ... a2n

⋮ ⋮ ⋮
ai1 ai2 ... ain

⋮ ⋮ ⋮
am1 am2 ... amn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

⋮

xn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(Ax)1
(Ax)2

⋮
(Ax)i
⋮

(Ax)m

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

13
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and Ax has i-th element

(Ax)i = ai1x1 + ai2x2 + ... + ainxn.

Example 2.13. If A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−3 1 −2
0 5 −2
−4 −2 5

⎤⎥⎥⎥⎥⎥⎥⎥⎦

and x =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−2
1

6

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, then

Ax =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

(−3)(−2) + (1)(1) + (−2)(6)
(0)(−2) + (5)(1) + (−2)(6)
(−4)(−2) + (−2)(1) + (5)(6)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−5
−7
36

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

Before we get to case 3, it is helpful to introduce a theorem that is closely related to case 2.

Theorem 2.14

If A = [a1, a2, ..., an] is an m × n matrix and c =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1

c2

⋮
cn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

is a column n-vector, then

Ac = c1a1 + c2a2 + ... + cnan.

Proof. Define (x)i as the i-th element of x. The element aik of A is the i-th component of the column m-vector

ak, so

aik = (ak)i.

Hence, applying the results for case 2 gives

(Ac)i =
n

∑
k=1

aikck =
n

∑
k=1

(ak)ick =
n

∑
k=1

(ckak)i.

Consequently,

Ac =
n

∑
k=1

ckak = c1a1 + c2a2 + ... + cnan.

If a1, a2, ..., an are column m-vectors and c1, c2, ..., cn are scalars, then an expression of the form

c1a1 + c2a2 + ... + cnan

is called a linear combination of the column vectors.

Case 3: product of an m ×n matrix and an n × p matrix. If A is an m × n matrix and B is an n × p matrix, then

the product AB has columns defined by multiplying the matrix A by the respective column vectors of B. That is, if

B = [b1, b2, ..., bp], then AB is the m × p matrix defined by

AB = [Ab1,Ab2, ...,Abp] .

14
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Example 2.15. If A =
⎡⎢⎢⎢⎢⎣

−2 1 3

4 −2 6

⎤⎥⎥⎥⎥⎦
and B =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−4 1

3 −1
−9 2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, then

AB =
⎡⎢⎢⎢⎢⎣

(−2)(−4) + (1)(3) + (3)(−9) (−2)(1) + (1)(−1) + (3)(−2)
(4)(−4) + (−2)(3) + (6)(−9) (4)(1) + (−2)(−1) + (6)(2)

⎤⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎣

−16 3

−76 18

⎤⎥⎥⎥⎥⎦
.

Definition 2.16: Index form of matrix product

If A = [aij] is an m × n matrix, B = [bij] is an n × p matrix, and C = AB, then

cij =
n

∑
k=1

aikbkj 1 ⩽ i ⩽m,1 ⩽ j ⩽ p.

This is the index form of the matrix product.

In order for the product AB to be defined, A and B must satisfy

# columns of A =# rows of B.

Theorem 2.17

If A, B and C have appropriate dimensions for the operations to be performed, then matrix multiplication

is associative, left distributive, and right distributive. That is,

A(BC) = (AB)C A(B +C) = AB +AC (A +B)C = AC +BC.

Proof. Associative property is trivial. Consider the right distributive property,

[(A +B)C]
ij
=

n

∑
k=1

(aik + bik)ckj =
n

∑
k=1

aikckj +
n

∑
k=1

bikckj

= (AC)ij + (BC)ij

= (AC +BC)ij .

It follows that (A +B)C = AC +BC. The left distributive property can be proven by similar manners.

It is worth noting that except for rare, special cases, matrix multiplication is not commutative. That is,

AB ≠ BA.

It is easy to find counterexamples: consider A as a m×n matrix, and B as a n×m matrix. AB gives a m×m matrix,

whereas BA gives a n × n matrix. If m ≠ n, then AB ≠ BA by the definition of equivalent matrices.

For an n × n matrix, we use the usual power notation to denote the operation of multiplying A by itself. That is,

A2 = AA, A3 = AAA. However, powers of matrices are not used as often in elementary linear algebra.

15
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Definition 2.18: Identity matrix

The identity matrix, In, is the n × n matrix with ones on the main diagonal and zeros elsewhere.

The elements of In can be represented by the Kronecker delta symbol, δij , defined by

δij = 1 i = j, δij = 0 i ≠ j.

Then,

In = [δij] .

The identity matrix have an important property, that it plays the same role in matrix multiplication as the number

1 does in the multiplication of real numbers. Namely,

Am×nIn = Am×n ImAm×p = Am×p.

We now discuss the properties of the transpose.

Theorem 2.19

Let A and C be m × n matrices, and let B be an n × p matrix. Then

(1) (AT )T = A.

(2) (A +C)T = AT +CT .

(3) (AB)T = BTAT .

Proof. We prove (3) here from the definition of the transpose and the index form. Statements (1) and (2) are

simple enough (I believe).

[(AB)T ]
ij
= (AB)ji

=
n

∑
k=1

ajkbki

=
n

∑
k=1

bkiajk =
n

∑
k=1

bTika
T
kj

= (BTAT )ij .

Consequently, (AB)T = BTAT .

Here we skip the proof for triangular matrices and matrix functions. For triangular matrices, it is worth knowing that

the product of two lower triangular matrices is a lower triangular matrix, and the product of two upper triangular

matrices is an upper triangular matrix. For matrix functions, the algebra is the same as algebra for matrices, and

the derivatives and integrals are simply the derivative and integral for every single element. Note that product rule

applies here, that is,
d

dt
(AB) = AdB

dt
+ dA
dt
B.
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2.3 Terminology for Systems of Linear Equations

Definition 2.20: System of equations

The general m × n system of linear equations is of the form

a11x1 + a12x2 + ... + a1nxn = b1,

a21x1 + a22x2 + ... + a2nxn = b2,

⋮

am1x1 + am2x2 + ... + amnxn = bm,

where the system coefficients aij and the system constants bj are given scalars and x1, x2, ..., xn denote

the unknowns in the system. If bi = 0 for all i, then the system is called homogeneous; otherwise it is called

nonhomogeneous.

By a solution to the system, we mean an ordered n-typle of scalars (c1, c2, ..., cn), which, when substituted

for x1, x2, ..., xn into the left-hand side of the system, yield the values on the right-hand side. The set of all

solutions to the system is called the solution set to the system.

A system of equations that has at least one solution is said to be consistent, whereas a system that has no

solution is called inconsistent.

Our problem will be to determine whether a given system is consistent and then , in the case when it is, to find its

solution set. To do this, we first define the matrix of coefficients and the augmented matrix.

Definition 2.21: A and A#

Naturally associated with the system of linear equations are the following two matrices:

(1) The matrix of coefficients A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 ... a1n

a21 a22 ... a2n

⋮ ⋮ ⋱ ⋮
am1 am2 ... amn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(2) The augmented matrix A# =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 ... a1n b1

a21 a22 ... a2n b2

⋮ ⋮ ⋱ ⋮ ⋮
am1 am2 ... amn bm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The augmented matrixA# completely characterizes a system of equations since it contains all the system coefficients

and the system constants. We will see in the following sections that the relationship between A and A# determines

the solution properties of a linear system.
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The m × n general system of linear equations can be written as the vector equation

Ax = b,

where A is the m × n matrix of coefficients,

x =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

⋮
xn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

b =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1

v2

⋮
bm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The column n-vector x is the vector of unknowns, and the column m-vector b is the right-hand side vector.

2.4 Row-Echelon Matrices and Elementary Row Operations

Consider the system of equations

x1 + a2x2 + a3x3 = y1

x2 + b3x3 = y2

x3 = y3

This system can be solved quite easily. From x3 = y3 in the third equation, we substitute back to the second equation

to obtain x2, and we substitute back to the first equation to obtain x1. This technique is called back substitution.

This section deals with characteristics of a linear system that can be solved by back substitution quite easily.

First, we define a row-echelon matrix.

Definition 2.22: Row-echelon matrix

An m × n matrix is called a row-echelon matrix if it satisfies the following three conditions:

(1) If there are any rows consisting entirely of zeros, they are grouped together at the bottom of the matrix.

(2) The first nonzero element in any nonzero row is a 1. (It is called a leading 1.)

(3) The leading 1 of any row below the first row is to the right of the leading 1 of the row above it.

Example 2.23.

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 −8 −3 7

0 1 5 9

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

is a row-echelon matrix, whereas

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 −1
0 1 2

0 1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

isn’t.

Note that not all matrices are row-echelon matrices. However, every matrix A can be reduced to row-echelon form

in a way that the solution set of the linear equation system with the coefficient matrix A remains unaltered. In

general, the following three operations can be performed on any m × n system of linear equations without altering

the solution set:

18
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(1) Permute equations.

(2) Multiply an equation by a nonzero constant.

(3) Add a multiple of one equation to another equation.

A similar statement can be made for the augmented matrix of the system. These operations are called elementary

row operations and is essential even for matrices not derived from linear equation systems. Consider the following

notations, all of which are going to be very important:

(1) Pij : permute the i-th and j-th rows of A.

(2) Mik : multiply every element of the i-th row of A by a nonzero scalar k.

(3) Aij(k): add to the elements of the j-th row of A the scalar k times the elements of the i-th row of A.

Furthermore, the notationA ∼ B means that matrixB has been obtained from matrixA by a sequence of elementary

row operation.

Definition 2.24: Row equivalency

Let A be an m × n matrix. Any matrix obtained from A by a finite sequence of elementary row operations is

said to be row-equivalent to A.

Example 2.25. We want to reduce A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 1 −1 3

1 −1 2 1

−4 6 −7 1

2 0 1 3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

to row-echelon form.

We do this step by step. We first put a leading 1 in the (1,1) position by P12.

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 1 −1 3

1 −1 2 1

−4 6 −7 1

2 0 1 3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∼

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 2 1

2 1 −1 3

−4 6 −7 1

2 0 1 3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Then, we use the leading 1 in the (1,1) position to clean up the first column, because essentially there should

be no non-zero elements under each leading 1. We do A12(−2),A13(4),A14(−2) to get

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 2 1

2 1 −1 3

−4 6 −7 1

2 0 1 3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∼

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 2 1

0 3 −5 1

0 2 1 5

0 2 −3 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Now we put a leading 1 in the (2,2) position. We cannot do it by permutation now, so let’s consider A32(−1).

19



2.4 Row-Echelon Matrices and Elementary Row Operations stanle

After, we use the new leading 1 to clean up the second column, namely A23(−2),A24(−2).

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 2 1

0 3 −5 1

0 2 1 5

0 2 −3 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∼

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 2 1

0 1 −6 −4
0 2 1 5

0 2 −3 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∼

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 2 1

0 1 −6 −4
0 0 13 13

0 0 9 9

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Now we put a leading 1 in the (3,3) position. Doing it by permutation and addition isn’t as convenient as

multiplication, so we do M3(1/13). We then use the leading 1 to clean up the third column with A34(−9).

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 2 1

0 1 −6 −4
0 0 13 13

0 0 9 9

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∼

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 2 1

0 1 −6 −4
0 0 1 1

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Then we try to put a leading 1 in the (4,4) position, but note that the matrix above is already in row-echelon

form, so we are good by just leaving it there. Also note that for each step that results in a leading 1, we used

permutation for (1,1), addition for (2,2), and multiplication for (3,3). In fact, we can use any of the three at

any time, but sometimes one method is just simpler than other. For example, using A43(−4/3) gives us the

leading 1 in (3,3), but it is far more complicated than M3(1/13).

Now, we derive some further results on row-echelon matrices that is crucial for solving systems of linear equations.

First note that a row-echelon form for a matrix A is not unique. Given one row-echelon form for A, we can always

obtain a different row-echelon form for A by taking the first row-echelon form for A and adding some multiple of

a given row to any rows above it. However, the row-equivalent matrices shave the same number of nonzero rows.

That is, they have the same rank.

Definition 2.26: Rank

The number of nonzero rows in any row-echelon form of a matrix A is called the rank of A and is denoted

rank(A).

Example 2.27. We want to determine rank(A) if A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

3 −1 4 2

1 −1 2 3

7 −1 8 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

. We compute the rank by first reduc-

ing A to row-echelon form,

A ∼

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 2 3

3 −1 4 2

7 −1 8 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

∼

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 2 3

0 2 −2 −7
0 6 −6 −21

⎤⎥⎥⎥⎥⎥⎥⎥⎦

∼

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 2 3

0 2 −2 −7
0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

∼

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 2 3

0 1 −1 −7/2
0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

Since there are two nonzero rows in the row-echelon form of A, it follows that rank(A) = 2.
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Here we define a special type of row-echelon matrices, called reduced row-echelon matrices.

Definition 2.28: Reduced row-echelon matrix

An m × n matrix is called a reduced row-echelon matrix if it is a row-echelon matrix and any column that

contains a leading 1 has zeros everywhere else.

Reduced row-echelon matrices are different than normal row-echelon matrices, that an m × n matrix is row-

equivalent to a unique reduced row-echelon matrix.

Example 2.29. We want a reduced row-echelon form of A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 1 −1 3

1 −1 2 1

−4 6 −7 1

2 0 1 3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. Having computed its row-

echelon form

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 2 1

0 1 −6 −4
0 0 1 1

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, we want to reduce the second and third column. We try apply A21(1) to

obtain

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 −4 −3
0 1 −6 −4
0 0 1 1

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, then apply A31(4),A32(6) to obtain

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 1

0 1 0 2

0 0 1 1

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, finishing the reduction.

2.5 Gaussian Elimination

We now illustrate how elementary row operations applied to the augmented matrix can be used to determine

whether the system is consistent, and if the system is consistent, to find all of its solutions.

Definition 2.30: Gaussian elimination

The process of reducing the augmented matrix A# to row-echelon form and then using back substitution

to solve the equivalent system is called Gaussian elimination. The particular case of Gaussian elimination

that arises when the augmented matrix is reduced to reduced row-echelon form is called Gauss-Jordan

elimination.

Example 2.31. We want to use Gauss-Jordan elimination to determine the solution set to

x1 − x2 − 5x3 = −3

3x1 + 2x2 − 3x3 = 5

2x1 − 5x3 = 1

21



2.5 Gaussian Elimination stanle

To do this, we first reduce the augmented matrix of the system to reduced row-echelon form, as follows:

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 −5 −3
3 2 −3 5

2 0 −5 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

∼

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 −5 −3
0 5 12 14

0 2 5 7

⎤⎥⎥⎥⎥⎥⎥⎥⎦

∼

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 −5 −3
0 1 2 0

0 2 5 7

⎤⎥⎥⎥⎥⎥⎥⎥⎦

∼

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 −5 −3
0 1 2 0

0 0 1 7

⎤⎥⎥⎥⎥⎥⎥⎥⎦

∼

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 0 32

0 1 0 −14
0 0 1 7

⎤⎥⎥⎥⎥⎥⎥⎥⎦

∼

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 18

0 1 0 −14
0 0 1 7

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

The augmented matrix is now in reduced row-echelon form. The equivalent system is

x1 = 18

x2 = −14

x3 = 7

The solution can be read off directly as (18,−14,7).

Now we try to derive the theory for the solution sets of system of equations. Theoretical alert (proof omittable).

Theorem 2.32: Solution sets of system of equations

Lemma 2.32.1

Consider the m × n linear system Ax = b. Let A# denote the augmented matrix of the system. If

rank(A) = rank(A#) = n, then the system has a unique solution.

Proof. If rank(A) = rank(A#) = n, then there are n leading ones in any row-echelon form of A, and

hence, back substitution gives a unique solution. Note that rank(A) ⩽ rank(A#), thus, there are only two

possibilities: rank(A) < rank(A#) or rank(A) = rank(A#).

Lemma 2.32.2

Consider the m × n linear system Ax = b. Let A# denote the augmented matrix of the system. If

rank(A) < rank(A#), the system is inconsistent.

Proof. If rank(A) < rank(A#), then there will be one row in the reduced row-echelon form of the aug-

mented matrix whose first nonzero element arises in the last column. Such a row corresponds to an

equation of the form

0x1 + 0x2 + ... + 0xn = 1,

which has no solution. Consequently, the system is inconsistent.
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Lemma 2.32.3

Consider the m × n linear system Ax = b. Let A# denote the augmented matrix of the system and let

r# = rank(A#). If r# = rank(A) < n, then the system has an infinite number of solution, indexed by

n − r# free variables.

Proof. Any row-echelon equivalent system have only r# equations involving the n variables, so there will

be n − r# > 0 free variables. Assigning arbitrary values to these variables results in the uniqueness of the

remaining r# variables from back substitutions. Since the free variables can each assume infinitely many

values, there are an infinite number of solutions to the system.

Now we can formalize the theorem regarding the theory of linear equation systems. Consider the m × n
linear system Ax = b. Let r denote the rank of A, and let r# denote the rank of the augmented matrix of the

system. Then,

(1) If r < r#, the system is inconsistent;

(2) if r = r#, the system is consistent, and

(a) There exists a unique solution if and only if r# = n, and

(b) there exists an infinite number of solutions if and only if r# < n.

Now we turn our attention to homogeneous linear systems. Trivially, we see that the homogeneous linear system

Ax = 0 has at least one solution: x = 0. In fact, it is sometimes referred to as the trivial solution. Hence, we can

conclude that all homogeneous linear systems are consistent for any coefficient matrix A.

However, a homogeneous system can have more than one solution. Particularly, a homogeneous system of m linear

equations in n unknowns, with m < n, has an infinite number of solutions. This can be shown by the fact that

r = r# ⩽m < n for a homogeneous systems.

Example 2.33. We want to determine the solution set to Ax = 0 if A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 2 3

0 1 −1
0 3 7

⎤⎥⎥⎥⎥⎥⎥⎥⎦

. Note that the first

column is zero, so we set up the augmented matrix

A# =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 2 3 0

0 1 −1 0

0 3 7 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

∼

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0

0 0 1 0

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

The equivalent system is x2 = 0, x3 = 0. Since x1 does not occur, it is a free variable and the solution set to

the system is therefore S = {(t,0,0) ∶ t ∈ R}.
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2.6 The Inverse of a Square Matrix

Consider the situation when, for a given n × n matrix A, there exists a matrix B satisfying

AB = In BA = In.

And yes, such B does exist, and it is the inverse of A.

Theorem 2.34: Uniqueness of inverse

Let A be an n × n matrix. Suppose B and C are both n × n matrices satisfying

AB = BA = In AC = CA = In.

Then, B = C.

Proof. Consider C = CIn = C(AB). It follows that

C = C(AB) = (CA)B = InB = B.

Definition 2.35: Invertible matrices

Let A be an n × n matrix. If there exists an n × n matrix A−1 satisfying

AA−1 = A−1A = In,

then we call A−1 the matrix inverse to A. We also say that A is invertible if A−1 exists. Invertible matrices

are sometimes called nonsingular, while noninvertible matrices are sometimes called singular.

Theorem 2.36

If A−1 exists, then the n × n system of linear equations

Ax = b

has the unique solution

x = A−1b

for every b ∈ Rn.

Proof. We can verify by direct substitution that x = A−1b is a solution to the linear system. Regarding the

uniqueness of the solution, observe that for any solution x1 to the system Ax = b,

Ax1 = b⇒ x1 = A−1b.
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Theorem 2.37

An n × n matrix A is invertible if and only if rank(A) = n.

Proof. If A−1 exists, then any n × n linear system Ax = b has a unique solution. Hence, it is implied that

rank(A) = n. Conversely, suppose rank(A) = n. Consider e1, e2, ..., en as the column vectors of In. Since

rank(A) = n, each of the linear systems

Axi = ei

has a unique solution xi. Consequently, letting X = [x1, x2, ..., xn], where x1, x2, ..., xn are the unique solutions

of Axi = ei, gives the following equality:

A [x1, x2, ..., xn] = [Ax1,Ax2, ...,Axn] = [e1, e2, ..., en] ⇒ AX = In.

We claim that XA = In. That is,

(AX)A = A⇒ A(XA − In) = 0n.

We must also show that XA − In = 0n. Let y1, y2, ..., yn denote the column vectors of the n × n matrix XA − In.

Equating corresponding column vector on A(XA − In) = 0n implies

Ayi = 0.

By assumption, rank(A) = n, so each of the systems has only the trivial solution. Consequently, each yi is the

zero vector, implying XA − In = 0n. Therefore,

XA = In.

Having shown AX = In and XA = In, we can now conclude, by definition, that X = A−1.

Corollary 2.38

Let A be an n × n matrix. If Ax = b has a unique solution for some column n-vector b, then A−1 exists.

Proof. If Ax = b has a unique solution, then rank(A) = n, hence A−1 exists.

An effective method of finding A−1 is the Gauss-Jordan technique. The proof of the method is omitted here.

Essentially, to find the inverse of A, create the n × 2n matrix [A In] and reduce A to In using elementary row

operations. Schematically,

[A In] ∼ ... ∼ [In A−1] .
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Example 2.39. We want to find A−1 if A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1 3

0 1 2

3 5 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

. We do this through the Gauss-Jordan technique:

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1 3 1 0 0

0 1 2 0 1 0

3 5 −1 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

∼

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1 3 1 0 0

0 1 2 0 1 0

0 2 −10 −3 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

∼

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 1 −1 0

0 1 2 0 1 0

0 0 −14 −3 −2 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

∼

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 1 −1 0

0 1 2 0 1 0

0 0 1 3
14

1
7

− 1
14

⎤⎥⎥⎥⎥⎥⎥⎥⎦

∼

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 11
14

− 8
7

1
14

0 1 0 − 3
7

5
7

1
7

0 0 1 3
14

1
7

− 1
14

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

Consequently,

A−1 = 1

14

⎡⎢⎢⎢⎢⎢⎢⎢⎣

11 −16 1

−6 10 2

3 2 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

Example 2.40. Continuing the previous example, we can use A−1 to solve the system

x1 + x2 + 3x3 = 2

x2 + 2x3 = 1

3x1 + 5x2 − x3 = 4

Consider the system as Ax = b, where b =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2

1

4

⎤⎥⎥⎥⎥⎥⎥⎥⎦

. Since A is invertible, the system has a unique solution

x = A−1b. Thus, we have, from the previous example, that

x = 1

14

⎡⎢⎢⎢⎢⎢⎢⎢⎣

11 −16 1

−6 10 2

3 2 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2

1

4

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

5
7

3
7

2
7

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

Consequently, x1, x2, x3 = (5/7,3/7,2/7).
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We now present some properties of the inverse.

Theorem 2.41

Let A and B be invertible n × n matrices. Then

(1) A−1 is invertible, and (A−1)−1 = A.

(2) AB is invertible, and (AB)−1 = B−1A−1.

(3) AT is invertible and (AT )−1 = (A−1)T .

Proof. For (1), we have A−1A = AA−1 = In from the definition.

For (2), (AB)(B−1A−1) = A(BB−1)A−1 = AA−1 = In, (B−1A−1)(AB) = B−1(A−1A)B = B−1B = In.

For (3), AT (A−1)T = (A−1A)T = ITn = In, (A−1)TAT = (AA−1)T = ITn = In.

2.7 Elementary Matrices and the LU Factorization

Definition 2.42: Elementary matrices

Any matrix obtained by performing a single elementary row operation on the identity matrix is called an

elementary matrix.

In particular, an elementary matrix is always a square matrix. There are three types of matrices, corresponding to

the three types of elementary row operations: Pij , Mik, Aij(k).

Example 2.43. In this example, we write all 2 × 2 elementary matrices.

(1) Permutation matrix: P12 =
⎡⎢⎢⎢⎢⎣

0 1

1 0

⎤⎥⎥⎥⎥⎦
.

(2) Scaling matrices: M1(k) =
⎡⎢⎢⎢⎢⎣

k 0

0 1

⎤⎥⎥⎥⎥⎦
, M2(k) =

⎡⎢⎢⎢⎢⎣

1 0

0 k

⎤⎥⎥⎥⎥⎦
.

(3) Row combinations: A12(k) =
⎡⎢⎢⎢⎢⎣

1 0

k 1

⎤⎥⎥⎥⎥⎦
, A21(k) =

⎡⎢⎢⎢⎢⎣

1 k

0 1

⎤⎥⎥⎥⎥⎦
.

More generally, the n × n elementary matrices have the following structure:

Pij have ones along the main diagonal except for (i, i) and (j, j), ones in the (i, j) and (j, i), and zeros elsewhere.

Mi(k) is the diagonal matrix diag(1,1, ..., k, ...,1), where k appears in the (i, i) position.

Aij(k) have ones along the main diagonal, k in the (j, i) position, and zeros elsewhere.

It is important to note that premultiplying an n × p matrix A by an n × n elementary matrix E has the effect of

performing the corresponding elementary row operation on A.
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Example 2.44. We want to determine the elementary matrices that reduce A =
⎡⎢⎢⎢⎢⎣

2 3

1 4

⎤⎥⎥⎥⎥⎦
to row-echelon

form. To do so, we can reduce A to row-echelon form with

⎡⎢⎢⎢⎢⎣

2 3

1 4

⎤⎥⎥⎥⎥⎦
∼
⎡⎢⎢⎢⎢⎣

1 4

2 3

⎤⎥⎥⎥⎥⎦
∼
⎡⎢⎢⎢⎢⎣

1 4

0 −5

⎤⎥⎥⎥⎥⎦
∼
⎡⎢⎢⎢⎢⎣

1 4

0 1

⎤⎥⎥⎥⎥⎦
.

The row operations used here is P12,A12(−2),M2(−1/5). Consequently,

M2(−1/5)A12(−2)P12(A) =
⎡⎢⎢⎢⎢⎣

1 4

0 1

⎤⎥⎥⎥⎥⎦
.

Since elementary row operation is reversible, it follows that each elementary matrix is also invertible. We have:

Mi(k)−1 =Mi(1/k) P −1
ij = Pij Aij(k)−1 = Aij(−k).

Considering the invertible n × n matrix A. We have the following transformation:

EkEk−1...E2E1A = In ⇒ A−1 = EkEk−1...E2E1

A = (A−1)−1 = E−1
1 E−1

2 ...E−1
k .

Now we discuss the LU decomposition. L stands for lower triangular, and U stands for upper triangular. We start

with an example.

Example 2.45. We want to use elementary row operations to reduce A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2 5 3

3 1 −2
−1 2 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

to upper triangular

form. Here we only use the type 3 elementary row operations, as follows:

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2 5 3

3 1 −2
−1 2 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

∼

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2 5 2

0 − 13
2

− 13
2

0 9
2

5
2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

∼

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2 5 3

0 − 13
2

− 13
2

0 0 2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

Here, we used A12(−3/2),A13(1/2),A23(9/13).

When using elementary row operations of type 3, the multiple of a specific row that is subtracted from row i to

put a zero in the (i, j) position is called a multiplier, denoted mij . Therefore, in the preceding example, the three

multipliers are

m21 = 3/2, m31 = −1/2, m32 = −9/13.

Not all matrices can be reduced to upper triangular form using only row operations of type 3. However, we restrict

our attention to invertible matrices A for which the reduction to upper triangular form can be accomplished only

by row operations of type 3. In terms of elementary matrices, we have

EkEk−1...E2E1A = U,
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where Ek,Ek−1, ...,E2,E1 are lower triangular type 3 elementary matrices and U is an upper triangular matrix. We

then have

A = E−1
1 E−1

2 ...E−1
k U = LU.

Here, L = E−1
1 E−1

2 ...E−1
k . As all Ei are lower triangular, L is also lower triangular. Furthermore, this LU factorization

is unique.

Example 2.46. We want to determine the LU factorization of A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2 5 3

3 1 −2
−1 2 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

. Having already computed

U =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2 5 3

0 − 13
2

− 13
2

0 0 −2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, we have

L = E−1
1 E−1

2 E−1
3 ,

hence the multipliers become useful here. We have

E−1
1 = A12(

3

2) E−1
2 = A13(−1/2) E−1

3 = A23(−9/13).

Substituting these results gives

L =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0

3
2

1 0

− 1
2

− 9
13

1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

The LU decomposition can be used to solve the n×n system of linear equation Ax = b. Consider A = LU , the system

becomes

LUx = b.

We can then separate the system into two systems:

Ly = b Ux = y.

The first system can be solved by forward substitution to get y, and the second system can be solved by backward

substitution to get x.

The LU decomposition is not mentioned or used in other sections of the book (plus solving linear systems with LU

is generally slower than using Gaussian elimination), so we will skip its example.
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2.8 Invertible Matrix Theorem I

We now present perhaps the most important theorem of this book: the baby Invertible Matrix Theorem. Although

it has six statements, it is still the "baby" version of the invertible matrix theorem, which will be discussed in section

4.10.

Theorem 2.47: Invertible matrix theorem I

Let A be an n × n matrix. The following conditions on A are equivalent:

(a) A is invertible.

(b) The equation Ax = b has a unique solution for every b ∈ Rn.

(c) The equation Ax = 0 has only the trivial solution x = 0.

(d) rank(A) = n.

(e) A can be expressed as a product of elementary matrices.

(f) A is row-equivalent to In.

Proof. The equivalence of (a)(b)(d) has been established in section 2.6. The equivalence of (a)(e) has been

established in section 2.7.

Now we establish (b) implies (c) implies (d).

Assuming that (b) holds, we can conclude that the linear system Ax = 0 has a unique solution: the trivial solution

x = 0. Hence, this is the unique solution, implying (c).

Assume that (c) holds, Ax = 0 has one trivial solution implies that reducing A to row-echelon form gives no free

variables. Thus, every column and every row of A contains a pivot, meaning that the row-echelon form of A has

n nonzero rows. That is, rank(A) = n, implying (d).

Now we establish (e) implies (f) implies (a).

Assuming that (e) holds, we can multiply In by a product of elementary matrices to obtain A, meaning that A is

row-equivalent of In, implying (f).

Assuming that (f) holds, A is row-equivalent to In. Then, we can write A as a product of elementary matrices,

each of which is invertible. Since a product of invertible matrices is invertible, we conclude that A is invertible,

proving (a).
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3 Determinants

The determinant is a number, associated with an n × n matrix A, whose value characterizes when the linear system

Ax = b has a unique solution.

3.1 The Definition of the Determinant

We begin with the special cases n = 1, n = 2, and n = 3.

Case 1: n = 1. For a 1 × 1 matrix A = [a11],
det(A) = a11

The matrix A is invertible if and only if rank(A) = 1 and inly if det(A) is nonzero.

Case 2: n = 2. The 2×2 matrix A =
⎡⎢⎢⎢⎢⎣

a11 a12

a21 a22

⎤⎥⎥⎥⎥⎦
is invertible if and only if rank(A) = 2, if and only if the row-echelon

form of A has two nonzero rows. Given that a11 ≠ 0, we can reduce A as follows:

⎡⎢⎢⎢⎢⎣

a11 a12

a21 a22

⎤⎥⎥⎥⎥⎦
∼
⎡⎢⎢⎢⎢⎣

a11 a12

0 a22 − a12a21
a11

⎤⎥⎥⎥⎥⎦
.

For A to be invertible, a11a22 − a12a21 ≠ 0. Thus, it is necessary that the 2 × 2 determinant, det(A), defined by

det(A) = a11a22 − a12a21

is nonzero.

Case 3: n = 3. The 3 × 3 matrix A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤⎥⎥⎥⎥⎥⎥⎥⎦

is invertible if and only if rank(A) = 3. Reducing A to

row-echelon form as in case 2, it is necessary for the 3 × 3 determinant defined by

det(A) = a11a22a33 + a12a23a31 + a13a21a32 − a11a23a32 − a12a21a33 − a13a22a31

is nonzero.

To generalize for n×n matrix A, we inspect each case in terms of their structure. Each determinant consists of a sum

of n! products, where each product term contains one element from each row and each column of A. Furthermore,

each possible choice of one element from each row and each column occur as a term of the summation. Each term is

assigned a plus or a minus sign. To tackle this, we introduce the concept of permutation. Computing determinants

based off permutation isn’t my favorite method, so I will only touch on it.

Definition 3.1: Permutation

Consider the first n positive integers 1,2,3, ..., n. Any arrangement of these integers in a specific order is

called a permutation. There are n! distinct permutations of the integers 1,2, ..., n.

The pair of elements pi and pk in the permutation (p1, p2, ..., pn) are said to be inverted if they are out of their

natural order. That is, if pi > pk with i < j. We say that (pi, pj) is an inversion. Denote N(p1, p2, ..., pn) as the total

number of inversions in the permutation (p1, p2, ..., pn).
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Definition 3.2: Parity

If N(p1, p2, ..., pn) is an even integer, then the permutation is even, and (p1, p2, ..., pn) has even parity.

If N(p1, p2, ..., pn) is an odd integer, then the permutation is odd, and (p1, p2, ..., pn) has odd parity.

Denote σ(p1, p2, ..., pn) = (−1)N(p1,p2,...,pn), σ = +1 if the permutation is even, σ = −1 if it is odd.

Definition 3.3: Determinant

Let A = [aij] be an n × n matrix. The determinant of A, denoted det(A), is defined as follows:

det(A) = ∑σ(p1, p2, ..., pn)a1p1a2p2a3p3 ...anpn
,

where the summation is over the n! distinct permutations (p1, p2, ..., pn) of the integers 1,2,3, ..., n. The

determinant of an n × n matrix is said to have order n.

We sometimes denote det(A) by
RRRRRRRRRRRRRRRRRRRRRRRRR

a11 a12 ... a1n

a21 a22 ... a2n

⋮ ⋮ ⋱ ⋮
an1 an2 ... ann

RRRRRRRRRRRRRRRRRRRRRRRRR

.

Geometrically, the cross product of two vectors in R3 can be represented as

a × b =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

i j k

a1 a2 a3

b1 b2 b3

⎤⎥⎥⎥⎥⎥⎥⎥⎦

= (a2b3 − a3b2)i + (a3b1 − a1b3)j + (a1b2 − a2b1)k.

Theorem 3.4

The area of a parallelogram with sides determined by the vectors a = a1i + a2j and b = b1i + b2j is

A = ∣det(A)∣,

where A =
⎡⎢⎢⎢⎢⎣

a1 a2

b1 b2

⎤⎥⎥⎥⎥⎦
.

The volume of a parallelepiped determined by the vectors a = a1i+a2j+a3k, b = b1i+b2j+b3k, c = c1i+c2j+c3k
is

V = ∣det(A)∣,

where A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a1 a2 a3

b1 b2 b3

c1 c2 c3

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

Proof. The area of the parallelogram is A = bh = ∥a∥h = ∥a∥∥b∥ sin θ = ∥a × b∥. Since the k components of a and b

are both zero, substitution yields

A = ∥(a1b2 − a2b1)k∥ = ∣a1b2 − a2b1∣ = ∣det(A)∣.
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Similarly, the volume of the parallelepiped is V = bh = ∥b × c∥h = ∥b × c∥∥a∥∣cosψ∣ = ∥b × c∥∣a ⋅ n∣, where n is a unit

vector that is perpendicular to the plane containing b and c. We now have

V = ∥b × c∥∥a∥∥∣cosψ∣ = ∣a ⋅ (b × c)∣

= ∣(a1i + a2j + a3k) ⋅ [(b2c3 − b3c2)i + (b3c1 − b1c3)j + (b1c2 − b2c1)k]∣

= ∣a1(b2c3 − b3c2) + a2(b3c1 − b1c3) + a3(b1c2 − b2c1)∣

= ∣det(A)∣.

3.2 Properties of Determinants

For large values of n, evaluating a determinant of order n using the definition given in the previous section is not very

practical. (Well, for me, evaluating a determinant of order 2 using that ugly definition is already not very practical

:)) In the next sections, we develop alternative techniques (like real techniques) for evaluating determinants.

Theorem 3.5

If A is an n × n upper or lower triangular matrix, then

det(A) = a11a22a33...ann =
n

∏
i=1

aii.

Proof. Consider det(A) = ∑σ(p1, p2, ..., pn)a1p1a2p2 ...anpn
. If A is upper triangular, then aij = 0 whenever i > j,

and the only nonzero terms in the preceding summation are those with pi ⩾ i for all i. Since all the pi must be

distinct, the only possibility is pi = i, so the above equation reduces to

det(A) = σ(1,2, ..., n)a11a22...ann.

Since σ(1,2, ..., n) = 1, it follows that

det(A) = a11a22...ann.

The proof for the lower triangular matrices is analogous to the proof above.

Now we turn our attention to the change of determinant from different operations: matrix algebra, elementary row

operations, and more. We first let A be an n × n matrix, and discuss the elementary row operations case by case.

Get the theoretical train honking.
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(1) If B is the matrix obtained by permuting two rows of A, then

det(B) = −det(A).
Proof. Let B be the matrix obtained by interchanging row r and row s in A. Without the loss of generality,

assume r < s. Then the elements of B are:

bij = aij if i ≠ r, s, bij = asj if i = r, bij = asj if i = s.

Thus, from the definition,

det(B) = ∑σ(p1, ..., pr, ..., ps, ..., pn)b1p1 ...brpr ...bsps ...bnpn

= ∑σ(p1, ..., pr, ..., ps, ..., pn)a1p1 ...aspr ...apsr ...anpn

= −∑σ(p1, ..., ps, ..., pr, ..., pn)a1p1 ...arps ...aspr anpn

Note that interchanging pr and ps in σ has the effect of changing the parity of the permutation. Note that

the sum on the right-hand side of this equation is det(A), so that

det(B) = −det(A).

(2) If B is the matrix obtained by multiplying one row of A by any scalar k, then

det(B) = kdet(A).
Proof. Let B be the matrix obtained by multiplying the i-th row of A through by any scalar k. Then

bij = kaij for each j. Then

det(B) = ∑σ(p1, ..., pn)b1p1 ...bnpn

= ∑σ(p1, ..., pn)a1p1 ...(kaipi )...anpn

= kdet(A).

(3) If B is the matrix obtained by adding a multiple of any row of A to a different row of A, then

det(B) = det(A).
Proof. Note that (6) and (8) are necessary for the proof.

Let A = [a1, a2, ..., an]
T

, and let B be the matrix obtained from A when k times row j of A is added to row

i of A. Then

B = [a1, a2, ..., ai + kaj , ..., an]
T
.

Using (6),

det(B) = det([a1, a2, ..., ai + kaj , ..., an]
T
) = det([a1, a2, ..., an]

T
) + det([a1, a2, ..., kaj , ..., an]

T
) .

Here, rows i and j of the second matrix are multiplies of one another, and so by (8), the value of the

second of ther second determinant is zero. Thus,

det(B) = det([a1, a2, ..., an]
T
) = det(A).
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(4) For any scalar k and n × n matrix A, we have

det(kA) = kndet(A).

Proof. Apply (2) to each row of the n × n matrix A.

(5) det(AT ) = det(A).

Proof. det(AT ) = ∑σ(p1, ..., pn)ap11...apnn. Since (p1, ..., pn) is a permutation of 1,2, ..., n, it follows that

ap11...apnn = a1q1 ...anqn
,

for appropriate values of q1, ..., qn. Furthermore,

N(p1, ..., pn) = N(q1, ..., qn) ⇒ σ(p1, ..., pn) = σ(q1, ..., qn).

Substituting gives

det(AT ) = ∑σ(q1, ..., qn)a1q1 ...anqn
= det(A).

(6) Let a1, a2, ..., an denote the row vectors of A. If the i-th row vector of A is the sum of two row vectors, say

ai = bi + ci, then det(A) = det(B) + det(C), where

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1

⋮
ai−1

bi

ai+1

⋮
an

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1

⋮
ai−1

ci

ai+1

⋮
an

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The corresponding property is also true for columns.

Proof. The elements of A are

akj = akj if k ≠ i, akj = bkj + ckj if k = i.

Thus,

det(A) = ∑σ(p1, ..., pn)a1p1 ...anpn

= ∑σ(p1, ..., pn)a1p1 ...(bipi + cipi )...anpn

= ∑σ(p1, ..., pn)a1p1 ...bipi ...anpn
+∑σ(p1, ..., pn)a1p1 ...cipi ...anpn

= det(B) + det(C).

(7) If A has a row (or column) of zeros, then det(A) = 0.

Proof. Since each term in det(A) contains a factor from the row (or column) of zeros, each terms is zero.

Hence, the det(A), the sum of the factors, is also 0.
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(8) If two rows (or columns) of A are scalar multiplies of one another, then det(A) = 0.

Proof. Assuming the rows and columns of A are all nonzero, and suppose rows i and j are scalar multiples

of each other. More precisely, suppose that row j is j times row i for some k ≠ 0. Let A′ denote the matrix

obtained by multiplying row i of the matrix A by k. By (2), det(A′) = kdet(A). For A′, row i and row j

are identical. If we interchange these rows, the matrix is unaltered, but according to (1) the determinant

of the resulting (unchanged) matrix is −det(A′). Therefore,

det(A′) = −det(A′) ⇒ det(A′) = 0.

(9) det(AB) = det(A)det(B).

Proof. Let E denote an elementary matrix. Note that det(E) = −1 if E permutes rows, det(E) = +1 if E

adds a multiple of one row to another row, and det(E) = k if E scales a row by K. Then, in each case,

det(EA) = det(E) = det(A). Now consider two cases.

Case 1. If A is not invertible, then AB is also not invertible. Consequently, det(AB) = 0 = det(A)det(B).
(This theorem will be covered later.)

Case 2. If A is invertible, then A = E1E2...Er. It follows that

det(AB) = det(E1E2...ErB) = det(E1)det(E2...ErB)

= det(E1)det(E2)...det(Er)det(B)

= det(E1E2...Er)det(B)

= det(A)det(B).

(10) If A is an invertible matrix, then det(A) ≠ 0 and det(A−1) = 1
det(A) .

Proof. Since A is invertible, det(A) ≠ 0. We can write AA−1 = In. Recalling that det(In) = 1, using (9)

gives

det(A)det(A−1) = det(In) = 1⇒ det(A−1) = 1

det(A) .

Note that for (9) and (10), we used a theorem that wasn’t covered.

Theorem 3.6

Let A be an n × n matrix. Then, A is invertible if and only if det(A) ≠ 0.

Proof. Let A∗ denote the reduced row-echelon form of A, and note that A is invertible if and only if A∗ = In.

Since A∗ is obtained from A by a sequence of elementary row operations, (1)(2)(3) together imply that det(A)
is a nonzero multiple of det(A∗). If A is invertible, then det(A∗) = det(In) = 1, so that det(A) ≠ 0.

Conversely, if det(A) ≠ 0, then det(A∗) ≠ 0. This implies that A∗ = In, so A is invertible.
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As the linear system Ax = b has unique solution for every b ∈ Rn if and only if A is invertible, the above theorem

tells us that the system has a unique solution x if and only if det(A) ≠ 0. For the homogeneous n × n linear system

Ax = 0, the system has an infinite number of solutions if and only if det(a) = 0, and has only the trivial solution if

and only if det(A) ≠ 0. More details will be covered in the invertible matrix theorem.

3.3 Cofactor Expansions

The underlying idea of cofactor expansion is that we can reduce a determinant of order n to a sum of determinants

of order n−1. Repeating the process makes it possible to express any determinant as a sum of determinants of order

2. Before getting into the details of cofactor expansion, it is necessary to define minors and cofactors.

Definition 3.7: Minor

Let A be an n × n matrix. The minor, Mij , of the element aij is the determinant of the matrix obtained by

deleting the i-th row vector and j-th column vector of A.

Example 3.8. For A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, we have M23 =
RRRRRRRRRRRRR

a11 a12

a31 a32

RRRRRRRRRRRRR
and M31 =

RRRRRRRRRRRRR

a12 a13

a22 a23

RRRRRRRRRRRRR
.

Definition 3.9: Cofactor

Let A be an n × n matrix. The cofactor, Cij , of the element aij is defined by

Cij = (−1)i+jMij ,

where Mij is the minor of aij .

From the above definition, we see that the cofactor of aij and the minor of aij are the same if i+ j is even, and they

are opposite if i + j is odd. The appropriate sign alternates as follows:

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

+ − + − ...

− + − + ...

+ − + − ...

− + − + ...

⋮ ⋮ ⋮ ⋮ ⋱

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

.

Example 3.10. For A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, we have C23 = −
RRRRRRRRRRRRR

a11 a12

a31 a32

RRRRRRRRRRRRR
and C31 =

RRRRRRRRRRRRR

a12 a13

a22 a23

RRRRRRRRRRRRR
.
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Theorem 3.11: Cofactor expansion theorem

Let A be an n × n matrix. If we multiply the elements in any row (or column) of A by their cofactors, then

the sum of the resulting products is det(A). Thus, expanding along row i or column j gives

det(A) =
n

∑
k=1

aijCik =
n

∑
k=1

akjCkj .

Proof. Consider det(A) = ai1Ĉi1 + ai2Ĉi2 + ... + ainĈin, where the coefficients Ĉij contain no elements from row

i or column j. WE must show that

Ĉij = Cij ,

where Cij is the cofactor of aij .

Consider first a11. From the original definition, the terms of det(A) that contain a11 are given by

a11∑σ(1, p2, ..., pn)a2p2 ...anpn
,

where the summation is over the (n − 1)! distinct permutations of 2,3, ..., n. Thus,

Ĉ11 = ∑σ(1, p2, ..., pn)a2p2 ...anpn
.

However, this summation is just the minor M11. Since C11 = M11, we have shown that the coefficient of a11 in

det(A) is indeed the cofactor C11.

Now consider the element aij . By successively interchanging adjacent rows and columns of A, we can move aij

into the (1,1) position without altering the relative positions of the other rows and columns of A. Denoting the

resulting matrix as A′, obtaining A′ from A requires i − 1 row interchanges and j − 1 column interchanges, so

the total number of interchanges required to obtain A′ from A is i + j − 2. Consequently,

det(A) = (−1)i+j−2det(A′) = (−1)i+jdet(A′).

The coefficient of aij in det(A) must be (−1)i+j times the coefficient of aij in det(A′). As aij occurs in the

(1,1) position of A′, its coefficient in det(A′) is M ′
11. Since the relative positions of the remaining rows in A has

not altered, it follows that M ′
11 = Mij , and therefore the coefficient of aij in det(A′) is Mij . Consequently, the

coefficient of aij in det(A) is (−1)i+jMij = Cij . Applying this result to each elements gives

Ĉij = Cij ,

which established the theorem for expansion along a row of elements ai1, ai2, ..., ain. The result along a column

follows directly as det(AT ) = det(A).
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Example 3.12. We want to evaluate

RRRRRRRRRRRRRRRRRRRRRRRRR

2 1 8 6

1 4 1 3

−1 2 1 4

1 3 −1 2

RRRRRRRRRRRRRRRRRRRRRRRRR

. To do so, we

RRRRRRRRRRRRRRRRRRRRRRRRR

2 1 8 6

1 4 1 3

−1 2 1 4

1 3 −1 2

RRRRRRRRRRRRRRRRRRRRRRRRR

=

RRRRRRRRRRRRRRRRRRRRRRRRR

0 −7 6 0

1 4 1 3

0 6 2 7

0 −1 −2 −1

RRRRRRRRRRRRRRRRRRRRRRRRR

= −

RRRRRRRRRRRRRRRRRRR

−7 6 0

6 2 7

−1 −2 −1

RRRRRRRRRRRRRRRRRRR

= −

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−7 6 0

−1 −12 0

−1 −2 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=
RRRRRRRRRRRRR

−7 6

−1 −12

RRRRRRRRRRRRR
= 90.

Some short commentary: the first step reduces the first column, then we used cofactor expansion along

column 1. Then for the order 3 determinant, reducing the third column and using cofactor expansion along

column 3 gives an order 2 determinant, which can be calculated with ease.

Now we introduce the adjoint method for finding the inverse of A, as a corollary to the cofactor expansion theorem.

Corollary 3.13

If the elements in the i-th row (or column) of an n×n matrix A are multiplied by the cofactors of a different

row (or column), then the sum of the resulting products is zero. That is,

n

∑
k=1

aikCjk = 0
n

∑
k=1

akiCkj = 0 i ≠ j.

Proof. We prove the first equation. Let B be the matrix obtained from A by adding row i to row j in matrix A.

We know that det(B) = det(A), and cofactor expansion of B along row j gives

det(A) = det(B) =
n

∑
k=1

(ajk + aik)Cjk =
n

∑
k=1

ajkCjk +
n

∑
k=1

aikCjk

This gives

det(A) = det(A) +
n

∑
k=1

aikCjk,

and the corollary follows immediately. The second equation can be proven by similar manner.

Definition 3.14: Adjoint

If every element in an n×n matrix is replaced by its cofactor, the resulting matrix is the matrix of cofactors,

denoted as MC . The transpose of the matrix of cofactors, MT
C , is called the adjoint of A and is denoted

adj(A). The elements of adj(A) are

adj(A)ij = Cji.
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Example 3.15. Consider A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

6 −1 0

2 −2 1

3 0 −3

⎤⎥⎥⎥⎥⎥⎥⎥⎦

. The cofactors of A are

C11 = 6,C12 = 9,C13 = 6,C21 = −3,C22 = −18,C23 = −3,C31 = −1,C32 = −6,C33 = −10.

Thus, we have

MC =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

6 9 6

−3 −18 −3
−1 −6 −10

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⇒ adj(A) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

6 −3 −1
9 −19 −6
6 −3 −10

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

Theorem 3.16: The adjoint method

If det(A) ≠ 0, then

A−1 = 1

det(A)adj(A).

Proof. Let B = 1
det(A)adj(A). It suffices to show that AB = In = BA. Using the index form of the matrix product,

we have

(AB)ij =
n

∑
k=1

aikbkj =
n

∑
k=1

aij ⋅
1

det(A) ⋅ adj(A)kj =
1

det(A)
n

∑
k=1

aikCjk = δij .

Here, the last step uses the corollary

n

∑
k=1

aikCjk = δijdet(A)
n

∑
k=1

akiCkj = δijdet(A).

The statement that BA = In can be proven analogously.

At last, we introduce Cramer’s rule, which is a very useful tool to solve n × n systems of equations.

Theorem 3.17: Cramer’s rule

It det(A) ≠ 0, the unique solution to the n × n system Ax = b is (x1, x2, ..., xn), where

xk =
det(Bk)
det(A) , k = 1,2, ..., n,

where

Bk =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 ... b1 ... a1n

a21 a22 ... b2 ... a2n

⋮ ⋮ ⋱ ⋮ ⋱ ⋮
an1 an2 ... bn ... ann

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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Proof. If det(A) ≠ 0, then the system Ax = b has the unique solution

x = A−1b,

where, from the adjoint method, we have

x = 1

det(A)adj(A)b.

Here, letting

x =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

⋮
xn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

b =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1

b2

⋮
bn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and using adj(A)ij = Cji gives

xk =
n

∑
i=1

(A−1)kibi =
n

∑
i=1

1

det(A)adj(A)kibi =
1

det(A)
n

∑
i=1

Cikbi, k = 1,2, ..., n.

The right-hand sum is exactly the cofactor expansion of det(Bk), so we arrive at the conclusion that

xk =
det(Bk)
det(A) , k = 1,2, ..., n.

Again, Cramer’s rule requires more work than the Gaussian Elimination method and only works for n × n systems

whose coefficient matrix is invertible. I will not present an applicational example here.
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4 Vector Spaces

Suppose we wish to find solutions to the differential equation y′ = 2y = 0. The results can be expressed in the form

y(x) = ce−2x for some constant c. Similarly, (in chapter 8) we will know that every solution to the homogeneous

second-order differential equation y′′ + a1y′ + a2y = 0 has the form y(x) = c1y1(x) + c2y2(x).
The theory underlying the solution to a linear differential equation and the theory underlying the solution of linear

equations can be considered as special cases of solving linear problems.

We begin developing the way of formulating linear problems in terms of abstract set of vectors V .

4.1 Vectors in Rn

A geometric vector can be considered as a directed line segment with a magnitude (length) and a direction.

Vectors are nice, that they follow certain properties. Namely, the commutative property x + y = y + x and the

associative property x + (y + z) = (x + y) + z. Additively, the existence of the zero vector x + 0 = x and the additive

inverse x + (−x) = 0 together forms the fundamental properties of vector addition.

For scalar multiplications of vectors, define kx as the vector with magnitude ∣k∣x and direction dependent on k.

Vectors also follow multiplicative properties, such as the associative property (st)x = s(tx), the distributive property

r(x + y) = rx + ry and (s + t)x = sx + tx, as well the existence of the one scalar 1x = x.

Now consider the components of the geometric vector v ∈ Rn. As a natural extension of addition and scalar

multiplication, the following properties hold true in Rn for all v = (x1, x2, ..., xn) and y = (y1, y2, ..., yn) :

v +w = (x1 + y1, x2 + y2, ..., xn + yn)

kv = (kx1, kx2, ..., kxn)

4.2 Definition of a Vector Space

Definition 4.1: Vector space

Let V be a nonempty set whose elements are called vectors. Consider an addition operation and a scalar

multiplication operation. V is a vector space over f if the following conditions are satisfied:

(a) Closure under addition. For u, v ∈ V , u + v ∈ V .

(b) Closure under scalar multiplication. For u ∈ V and k ∈ R, ku ∈ V .

There are actually more conditions to the vector spaces, but often times showing closure will suffice.

Example 4.2: Examples of vector spaces.

(1) Rn and Cn, the real/complex vector space of real/complex numbers.

(2) Mm×n(R), the real vector space of all m × n matrices.

(3) Ck(I), the vector space of all real-valued functions that are continuous and is k-times differentiable

on an interval.
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(4) Pn(R), the vector space of all real-valued polynomials of maximum degree of n with real coefficients,

i.e., Pn(R) = {a0 + a1x + a2x2 + ... + anxn ∶ a0, a1, ..., an ∈ R}.

4.3 Subspaces

Consider a subset of vectors from an appropriate vector spaces. This raises a key question, that whether this subset

of vectors is a vector space in its own right.

Definition 4.3: Subspace

Let S be a nonempty subset of a vector space V . If S is itself a vector space under the same operations of

addition and scalar multiplication as used in V , then S is a subspace of V .

Theorem 4.4

Let S be a nonempty subset of a vector space V . S is a subspace of V if and only if S is closed under the

operations of addition and scalar multiplication in V .

Proof. We prove the forward direction first. If S is a subspace of V , then it is a vector space, so it is closed

under addition and scalar multiplication by definition. Conversely, assume that S is closed under addition and

multiplication. Since we use the same operations in S as in V , the vector space axioms are inherited from V by

the subset S, so S is a subspace of V .

Example 4.5. Let V = R2, and let S1 = {(x,x − 1) ∶ x ∈ R}, S2 = {(x,x2) ∶ x ∈ R}. We want to show if S1 and

S2 are subspaces of V . We easily know that S1 is not a subspace of V by the zero vector check. Although

S2 satisfies the zero vector check, it is not closed under addition. Consider x = (x1, x2), y = (y1, y2), and

x, y ∈ S2. x + y = (x1 + y1, x22 + y22) ∉ S2.

Theorem 4.6

S = {0} is a subspace V if S ⊂ V .

Proof. S is nonempty, and it is trivial that S is closed under addition and scalar multiplication.

Definition 4.7: Null space

Let A be an m × n matrix. The solution set to the corresponding homogeneous linear system Ax = 0 is the

null space of A, and is denoted nullspace(A), i.e.,

nullspace(A) = {x ∶ Ax = 0} .

We now show the connection between differential equations and vector spaces.
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Theorem 4.8

The set of all solutions to the homogeneous linear differential equation

y′′ + a1(x)y′ + a2(x)y = 0

on an interval I is a vector space.

Proof. Let S denote the set of all solutions to the given differential equation, a nonempty subset of C2(I).
Assume y1, y2 ∈ S, k ∈ R. Then,

y′′1 + a1(x)y′1 + a2(x)y1 = 0 y′′2 + a1(x)y′2 + a2(x)y2 = 0

Now, if y(x) = y1(x) + y2(x), then y′′ + a1y′ + a2y = (y1 + y2)′′ + a1(y1 + y2)′ + a2(y1 + y2) = 0.

Also, if y(x) = ky1(x), then y′′ + a1y′ + a2y = (ky1)′′ + a1(ky1)′ + a2(ky1) = 0.

As S is closed under addition and scalar multiplication, S is a subspace of C2(I).

4.4 Spanning Sets

Before introducing spanning sets, we explain the concept of a linear combination of v1, v2, ..., vk, the most general

way in which we can combine the vectors v1, v2, ..., vk ∈ V :

v = c1v1 + c2v2 + ... + ckvk,

where c1, c2, ..., ck are scalars.

Definition 4.9: Spanning sets

If every vector in a vector space V can be written as a linear combination of v1, v2, ..., vk, then V is spanned

or generated by v1, v2, ..., vk and call the set of vectors {v1, v2, ..., vk} a spanning set of V .

Theorem 4.10

Let v1, v2, ..., vk be vectors in Rn. Then {v1, v2, ..., vk} spans Rn if and only if the matrix A = [v1, v2, ..., vk],
the linear system Ac = v is consistent for every v ∈ Rn.

Proof. Rewriting the system as the linear combination c1v1 + c2v2 + ... + ckvk = v. The existence of a solution

(c1, c2, ..., ck) to this vector equation for each v ∈ Rn is equivalent to {v1, v2, ..., vk} spans Rn.

Example 4.11. We want to determine a spanning set for P2(R).
Consider p0(x) = 1, p1(x) = x, p2(x) = x2. Then, p(x) = a0p0(x) + a1p1(x) + a2p2(x).

Theorem 4.12

Let v1, v2, ..., vk be vectors in a vector space V . Then span{v1, v2, ..., vk} is a subspace of V .
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Proof. Consider v,w ∈ S. Then we have

v = a1v1 + a2v2 + ... + akvk w = b1v1 + b2v2 + ... + bkvk.

Thus, v +w = (a1v1 + a2v2 + ... + akvk) + (b1v1 + b2v2 + ... + bkvk) = c1v1 + c2v2 + ... + ckvk.

Also, kv = ka1v1 + ka2v2 + ... + kakvk = d1v1 + d2v2 + ... + dkvk.

As S is closed under addition and scalar multiplication, S is a subspace of V .

4.5 Linear Dependence and Linear Independence

Definition 4.13: Linear dependency

A finite nonempty set of vectors {v1, v2, ..., vk} in a vector space V is said to be linearly dependent if there

exist scalars c1, c2, ..., ck, not all zero, such that

c1v1 + c2v2 + ... + ckvk = 0.

Such a nontrivial linear combination of vectors is sometimes referred to as a linear dependency among the

vectors v1, v2, ..., vk.

A set of vectors that is not linearly dependent is called linearly independent.

Example 4.14. Let V be the vector space of all functions defined on an interval I. If

f1(x) = 1 f2(x) = 2 sin2 x f3(x) = −5 cos2(x),

then {f1, f2, f3} is linearly dependent in V , since the trigonometric identity implies f1(x) = f2(x)/2−f3(x)/5.

We can therefore conclude from theorem 4.5.2 that

span{1,2 sin2 x,−5 cos2 x} = span{2 sin2 x,−5 cos2 x}

Now we consider linear dependency in Rn. Let {v1, v2, ..., vk} be a set of vectors in Rn. Let A denote the matrix

A = [v1, v2, ..., vk]. Since each of the given vectors is in Rn, it follows that A is a n×k matrix. The linear combination

c1v1 + c2v2 + ... + ckvk = 0 can be written as Ac = 0, where c = [c1c2...ck]T .

Then, let v1, v2, ..., vk be vectors in Rn and A = [v1, v2, ..., vk]. Then {v1, v2, ..., vk} is linearly dependent if and only

if the linear system Ac = 0 has a nontrivial solution for c. That is, det(A) = 0.

We now consider the linear dependency of the set of functions.

Definition 4.15: Linear dependency of functions

The set of functions {f1, f2, ..., fk} is linearly independent on an interval I if and only if the only values of

the scalars c1, c2, ..., ck such that

c1f1(x) + c2f2(x) + ... + ckfk(x) = 0

are c1 = c2 = ... = ck = 0 for all x ∈ I.
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The linear dependency of functions can be determined by the Wronskian.

Definition 4.16: Wronskian

Let f1, f2, ..., fk be functions in Ck−1(I). The Wronskian of these functions is the order k determinant

defined by

W [f1, f2, ..., fk](x) =

RRRRRRRRRRRRRRRRRRRRRRRRR

f1(x) f2(x) ... fk(x)
f ′1(x) f ′2(x) ... f ′k(x)
⋮ ⋮ ⋱ ⋮

f
(k−1)
1 (x) f

(k−1)
2 (x) ... f

(k−1)
k (x)

RRRRRRRRRRRRRRRRRRRRRRRRR

.

Theorem 4.17

Let f1, f2, ..., fk be functions in Ck−1(I). If W [f1, f2, ..., fk] is nonzero at some point x0 ∈ I, then

{f1, f2, ..., fk} is linearly independent on I.

Proof. Assume c1f1(x)+c2f2(x)+ ...+ckfk(x) = 0 for all x ∈ I. Differentiating k−1 times yields the linear system

whose the determinant of the matrix of coefficients isW [f1, f2, ..., fk](x). Consequently, ifW [f1, f2, ..., fk](x0) ≠
0 for some x0 ∈ I, then the determinant is nonzero, and therefore the only solution is the trivial solution

c1 = c2 = ... = ck = 0. That is, the given set is linearly independent on I.

The Wronskian can only be used to determine if a set of functions is linear independent. That is, ifW [f1, f2, ..., fk](x) =
0 for all x ∈ I, we cannot conclude any information as to the linear dependence or independence of {f1, f2, ..., fk}
on I.

4.6 Bases and Dimension

Definition 4.18: Basis

A set of vectors {v1, v2, ..., vk} ∈ V is called a basis for V if

(a) the vectors v1, v2, ..., vk are linearly independent.

(b) the vectors together span V .

There do exist vector spaces V for which it is impossible to find a finite set of linearly independent vectors that span

V . For example, the vector space Cn(I) have infinitely many linearly independent vectors that span V . These are

called infinite-dimensional vector spaces. We primarily consider the vector spaces that can be spanned by finitely

many vectors, or finite-dimensional vector spaces.

Theorem 4.19

If a finite-dimensional vector space has a basis of n vectors, then any set of more than n vectors is linearly

dependent.
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Proof. Let v1, v2, ..., vn be a basis for V , and any set of m > n vectors. Consider {u1, u2, ..., um}, each can

be represented as a linear combination of v1, v2, ..., vn. The system of equation c1u1 + c2u2 + ... + cmum = 0

has nontrivial solutions as the number of equations exceeds the number of unknowns. Hence, the vectors

u1, u2, ..., um is necessarily linearly dependent.

Definition 4.20: Dimension

The dimension of a finite-dimensional vector space V , written dim[V ], is the number of vectors in any basis

for V , except for when V = {0}, where its dimension is zero.

Example 4.21. The dimensions for the following common vector spaces are trivial.

(a) dim[Rn] = n

(b) dim[Mm×n(R)] =mn

(c) dim[Pn(R)] = n + 1

(d) dim[Ck(I)] = ∞

Theorem 4.22

If dim[V ] = n, then any set of n linearly independent vectors in V is a basis for V .

Proof. Let v1, v2, ..., vn be n linearly independent vectors in V . We need to show that they span V .

Consider any v ∈ V , then the equation c0v + c1v1 + ... + cnvn = 0 has at least one non-trivial solution as

{v, v1, v2, ..., vn} is linearly dependent. Hence, v = −(c1v1 + v2v2 + ... + cnvn)/c0. Likewise, every vector v can be

written as a linear combination of v1, v2, ..., vn and hence {v1, v2, ..., vn} spans V .

The result of this proof is significant, especially when connecting with differential equations. In later chapters, we

will explicitly construct a basis for the solution space to the differential equation

y(n) + a1y(n−1) + ... + an−1y′ + any = 0.

We can now establish an equivalence relation between statements. If dim[V ] = n and S = {v1, v2, ..., vn} is a set of

n vectors in V , then the following statements are equivalent:

(1) S is a basis for V .

(2) S is linearly independent.

(3) S spans V .

4.7 Change of Basis

If we have a finite basis for a vector space V , then, since the vectors in a basis span V , any vector in V can be

expressed as a linear combination of the basis vectors. The next theorem establishes that there is only one way in

which we can do this.
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Theorem 4.23

If V is a vector space with basis {v1, v2, ..., vn}, then every vector v ∈ V can be written uniquely as a linear

combination of v1, v2, ..., vn.

Proof. Since v1, v2, ..., vn span V , every vector v ∈ V can be expressed as

v = a1v1 + a2v2 + ... + anvn.

Suppose also that

v = b1v1 + b2v2 + ... + bnvn,

it suffices to prove that ai = bi for each i. Consider

v − v = (a1 − b1)v1 + (a2 − b2)v2 + ... + (an − bn)vn = 0.

However, as v1, v2, ..., vn are linearly independent, the only solution to the equation is the trivial solution ai−bi =
0. This implies ai = bi for each i, completing the proof.

Definition 4.24: Ordered basis

An ordered basis is defined as a basis in which the order is kept track of.

If B = {v1, v2, ..., vn} is an ordered basis for V and v ∈ V , then the scalars c1, c2, ..., cn in the unique n-tuple

such that

v = c1v1 + c2v2 + ... + cnvn

are called the components of v relative to the ordered basis B = {v1, v2, ..., vn}. The column vector of the

components of v relative to the ordered basis by [v]B , and [v]B is the component vector of v relative to B.

Example 4.25. We want to determine [v]B of v = (1,7) in R3 relative to B = {(1,2), (3,1)}.

Letting v1 = (1,2) and v2 = (3,1) allows us to determine constants c1, c2 such that

c1

⎡⎢⎢⎢⎢⎣

1

2

⎤⎥⎥⎥⎥⎦
+ c2

⎡⎢⎢⎢⎢⎣

3

1

⎤⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎣

1

7

⎤⎥⎥⎥⎥⎦
.

The solution is (4,−1), which gives the components of v relative to the ordered basis B = {v1, v2}. Thus,

v = 4v1 − v2, giving [v]B =
⎡⎢⎢⎢⎢⎣

4

−1

⎤⎥⎥⎥⎥⎦
.

If we are given two different ordered basis for an n-dimensional vector space V , say

B = {v1, v2, ..., vn} C = {w1,w2, ...,wn} ,

and a vector v ∈ V , we want to know the relation between [v]B and [v]C . The connection is defined as a change-

of-basis matrix, as follows.
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Definition 4.26: Change of basis matrix

Let V be an n-dimensional vector space with ordered basis B = {v1, v2, ..., vn} and C = {w1,w2, ...,wn}. The

change-of-basis matrix is defined by

PC←B = [[v1]C , [v2]C , ..., [vn]C] .

In words, the components of each vector in the old basis B with respect of the new basis C and write the

component vectors in the columns of the change of basis matrix.

There then exists a relation between the component vector:

[v]C = PC←B[v]B .

Example 4.27. Let V = R2, B = {(1,2), (3,4)}, C = {(7,3), (4,2)}, v = (1,0). We want to know: [v]B and

[v]C , PC←B and PB←C , and [v]C from the above equation.

Consider c1(1,2) + c2(3,4) = (1,0), and d1(7,3) + d2(4,2) = (1,0). Then, we have (c1, c2) = (−2,1), (d1, d2) =
(1,−3/2) as the solution sets. Then,

[v]B =
⎡⎢⎢⎢⎢⎣

−2
1

⎤⎥⎥⎥⎥⎦
[v]C =

⎡⎢⎢⎢⎢⎣

1

−1.5

⎤⎥⎥⎥⎥⎦
.

Consider PC←B , we have

[v1]C =
⎡⎢⎢⎢⎢⎣

−3
5.5

⎤⎥⎥⎥⎥⎦
[v2]C =

⎡⎢⎢⎢⎢⎣

−5
9.5

⎤⎥⎥⎥⎥⎦
PC←B =

⎡⎢⎢⎢⎢⎣

−3 −5
5.5 9.5

⎤⎥⎥⎥⎥⎦
.

Consider PB←C , we have

[w1]B =
⎡⎢⎢⎢⎢⎣

−9.5
5.5

⎤⎥⎥⎥⎥⎦
[w2]B =

⎡⎢⎢⎢⎢⎣

−5
3

⎤⎥⎥⎥⎥⎦
PB←C =

⎡⎢⎢⎢⎢⎣

−9.5 −5
5.5 3

⎤⎥⎥⎥⎥⎦
.

Then, we compute as follows:

PC←B[v]B =
⎡⎢⎢⎢⎢⎣

1

−1.5

⎤⎥⎥⎥⎥⎦
= [v]C .

Theorem 4.28

Let V be a vector space with ordered bases A, B, C. Then

PC←A = PC←BPB←A.

Proof. For every v ∈ V , we have

PC←BPB←A[v]A = PC←B[v]B = [v]C = PC←A[v]A.
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4.8 Row Space and Column Space

Definition 4.29: Row space and Column space

Let A = [aij] be an m×n real matrix. The row vectors of this matrix are row n-vectors, so they together span

a subspace of Rn. The row space of A is the subspace of Rn.

Similarly, the column vectors of this matrix are row m- vectors, so they together span a subspace of Rm. The

column space of A is the subspace of Rm.

Theorem 4.30

Let A be an m × n matrix. The set of column vectors of A corresponding to those column vectors containing

leading ones in any row-echelon form of A is a basis for colspace(A).

Example 4.31. Determine a basis for colspace(A) if

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 −1 −2 −1
2 4 −2 −3 −1
5 10 −5 −3 −1
−3 −6 3 2 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Reducing A to row-echelon form gives

A ∼

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 −1 −2 −1
0 0 0 1 1

0 0 0 7 4

0 0 0 −4 −2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∼

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 −1 −2 −1
0 0 0 1 1

0 0 0 0 −3
0 0 0 0 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∼

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 −1 −2 −1
0 0 0 1 1

0 0 0 0 1

0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The column vectors are then the first, fourth, and fifth rows, so a basis for colspace(A) is

{(1,2,5,−3), (−2,−3,−3,2), (−1,−1,−1,1)} .

4.9 The Rank-Nullity Theorem

Definition 4.32: Nullity

The nullity of A is the dimension of the null space of A.

Theorem 4.33: Rank-Nullity Theorem

For any m × n matrix A,

rank(A) + nullity(A) = n.

Proof. We don’t present a direct proof here. Refer to the general rank-nullity theorem in chapter 6.
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4.10 Invertible Matrix Theorem II

We now present perhaps the most important theorem of this book: the full Invertible Matrix Theorem. This time,

the full one. If you are only allowed to bring one sheet of paper to your linear algebra exam, this is undoubtedly

the page (unless your exam is differential-equation-heavy, then I guess not :))

Theorem 4.34: Invertible matrix theorem

Let A be an n × n matrix. The following conditions on A are equivalent:

(a) A is invertible.

(b) The equation Ax = b has a unique solution for every b ∈ Rn.

(c) The equation Ax = 0 has only the trivial solution x = 0.

(d) rank(A) = n.

(e) A can be expressed as a product of elementary matrices.

(f) A is row-equivalent to In.

(g) nullity(A) = 0.

(h) nullspace(A) = {0}.

(i) The columns of A form a linearly independent set of vectors in Rn.

(j) colspace(A) = Rn.

(k) The columns of A form a basis for Rn.

(l) The rows of A form a linearly independent set of vectors in Rn.

(m) rowspace(A) = Rn.

(n) The rows of A form a basis for Rn.

(o) AT is invertible.

Proof. The equivalence of (a)(b)(c)(d)(e)(f) has been established in section 2.8.

The equivalence of (a)(h) has been proved in the Rank-Nullity theorem. The equivalence of (g)(h) is trivial.

The equivalence of (a)(i) is immediate from section 4.5. Since the dimension of colspace(A) is simply rank(A),
the equivalence of (a)(j) is immediate. Next, from the definition of a basis, (i)(j)(k) are logically equivalent.

Moreover, since the row space and column space of A always have the same dimension, (j)(m) are equivalent.

Since rowspace(A) = colspace(AT ), the equivalence of (j)(m) implies the equivalence of (a)(o). Finally, the

equivalence of (a)(o) proves that (k)(n) are equivalent, and (i)(l) are equivalent.

Yes, at last, everything is equivalent. How magical it is.
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6 Linear Transformation

A variety of problems we have studied to this point in the text, both in linear algebra and in differential equations,

can be viewed as special cases of the general problem of finding all vectors v in a vector space with the property

that T (v) = 0, where T is a mapping from a vector space V into a vector space W .

6.1 Definition of a Linear Transformation

Definition 6.1: Mapping

Let V and W be vector spaces. A mapping from V into W is a rule that assigns to each vector v ∈ V precisely

one vector w = T (v) ∈W . Such mapping is denoted as T ∶ V →W .

Definition 6.2: Linear transformation

Let V and W be vector spaces. A mapping T ∶ V →W is a linear transformation from V to W if:

(1) T (u + v) = T (u) + T (v) for all u, v ∈ V .

(2) T (cv) = cT (v) for all v ∈ V and all c ∈ R.

These properties are the linearity properties. V is the domain of T , and W is the codomain of T .

Now we give an example of a linear transformations.

Example 6.3. Define T ∶ C2(I) → C0(I) by T (y) = y′′ + y. Verify that T is a linear transformation.

Consider y1, y2 ∈ C2(I). Then T (y1 + y2) = (y1 + y2)′′ + (y1 + y2) = y′′1 + y1 + y′′2 + y2 = T (y1) + T (y2).
Now consider y1 ∈ C2(I). Then T (cy1) = (cy1)′′ + cy1 = c(y′′1 + y1) = cT (y1).
Both linearity properties are satisfied, so T is a linear transformation.

Theorem 6.4: Linear transformation and combination

A mapping T ∶ V →W is a linear transformation if and only if

T (c1v1 + c2v2) = c1T (v1) + c2T (v2)

for all v1, v2 ∈ V and all scalars c1, c2.

Proof. If T (c1v1+c2v2) = c1T (v1)+c2T (v2), then the linearity properties, which are special cases of the equation,

are satisfied. ((1) by c1 = c2 = 1, (2) by c1 = c and c2 = 0) Hence, T is a linear transformation.

Conversely, if T is a linear transformation, then T (c1v1 + c2v2) = T (c1v1) + T (c2v2) = c1T (v1) + c2T (v2).

Now we are interested in linear transformations between vector spaces Rn and Rm, as they are very pivotal in linear

algebra and its applications.
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Theorem 6.5: T (x) =Ax as a linear transformation

Let A be an m × n matrix, and define T ∶ Rn → Rm by T (x) = Ax. Then T is a linear transformation.

Proof. We want to verify the linearity properties by considering x, y ∈ Rn.

T (x + y) = A(x + y) = Ax +Ay = T (x) + T (y), and T (cx) = A(cx) = cA(x) = cT (x). As both linearity properties

are satisfied, then T is a linear transformation. In fact, T is often called a matrix transformation.

Example 6.6. We want to determine the matrix transformation T ∶ R2 → R4 if

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 1

3 −1
−5 3

0 −4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

To determine the transformation, we have

T (x) = Ax =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 1

3 −1
−5 3

0 −4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

x1

x2

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2x1 + x2
3x1 − x2
−5x1 + 3x2

−4x2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Here, we have T (x1, x2) = (2x1 + x2,3x1 − x2,−5x1 + 3x2,−4x2).

After we have worked the direct way, we also want to understand how the converse works. That is, given a certain

transformation T , we want to find out the matrix of transformation.

Definition 6.7: Matrix of transformation

If T ∶ Rn → Rm is a linear transformation, then the m × n matrix

A = [T (e1), T (e2), ..., T (en)]

is called the matrix of T .

Example 6.8. We want to determine the matrix of the linear transformation T ∶ R3 → R4 defined by

T (x1, x2, x3) = (−1 + 3x3,−2x3,2x1 + 5x2 − 9x3,−7x1 + 5x2).

We consider standard basis vectors in R3 : e1 = (1,0,0), e2 = (0,1,0), e3 = (0,0,1). This gives T (e1) =
(−1,0,2,−7), T (e2) = (0,0,5,5), T (e3) = (3,−2,−9,0). The matrix of the transformation is

A = [T (e1), T (e2), T (e3)] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 3

0 0 −2
2 5 −9
−7 5 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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6.2 Transformations of R2

We consider the particular case of linear transformations T ∶ R2 → R2 in this section. Often called a transformation

of R2, this transformation can be represented by its effect on an arbitrary point in the Cartesian plane.

Consider a line

l ∶
⎛
⎜
⎝
x

y

⎞
⎟
⎠
=
⎛
⎜
⎝
x1

y1

⎞
⎟
⎠
+ t

⎛
⎜
⎝
a

b

⎞
⎟
⎠
= x1 + tv.

The transformation T (x) = Ax therefore transforms the line into

T (x) = A(x1 + tv) = Ax1 + tAv = y1 + tw.

Here, y1 = Ax1 and w = Av.

We now show some simple transformations in R2, considering v = (x, y) is an arbitrary point in R2.

Rx =
⎡⎢⎢⎢⎢⎣

1 0

0 −1

⎤⎥⎥⎥⎥⎦
Ry =

⎡⎢⎢⎢⎢⎣

−1 0

0 1

⎤⎥⎥⎥⎥⎦
Rxy =

⎡⎢⎢⎢⎢⎣

0 1

1 0

⎤⎥⎥⎥⎥⎦
.

The above three transformations reflect a point v = (x, y) over the x-axis, y-axis, and the line y = x, respectively.

LSx =
⎡⎢⎢⎢⎢⎣

k 0

0 1

⎤⎥⎥⎥⎥⎦
LSy =

⎡⎢⎢⎢⎢⎣

1 0

0 k

⎤⎥⎥⎥⎥⎦
The above two stretch a point v = (x, y). The first gives (x, y) → (kx, y), and the second (x, y) → (x, ky). If we only

consider the situations where k > 0, then the transformation can be either an expansion (when k > 1), a compression

(when k < 1), or a identity transformation (when k = 1).

Sx =
⎡⎢⎢⎢⎢⎣

1 k

0 1

⎤⎥⎥⎥⎥⎦
Sy =

⎡⎢⎢⎢⎢⎣

1 0

k 1

⎤⎥⎥⎥⎥⎦
The above two shear a point v = (x, y). The first gives (x, y) → (x + ky, y), and the second (x, y) → (x, kx + y). In

this case, each point in the plane is moved parallel to the axis a distance proportional to its other coordinate.

Consider T as any transformation of R2 with invertible matrix A. Then,

T (v) = Av = E−1
1 E−1

2 ...E−1
n v.

This means, if we consider any transformation with an invertible matrix, we can describe the transformation T as a

combination of reflections, shears, and stretches.

Example 6.9. Consider T ∶ R2 → R2 with invertible matrix A =
⎡⎢⎢⎢⎢⎣

3 9

1 2

⎤⎥⎥⎥⎥⎦
. We want to describe T as a

combination of reflections, shears, and stretches.

We do this by first reducing A to reduced row-echelon form.

⎡⎢⎢⎢⎢⎣

3 9

1 2

⎤⎥⎥⎥⎥⎦
∼
⎡⎢⎢⎢⎢⎣

1 2

3 9

⎤⎥⎥⎥⎥⎦
∼
⎡⎢⎢⎢⎢⎣

1 2

0 3

⎤⎥⎥⎥⎥⎦
∼
⎡⎢⎢⎢⎢⎣

1 2

0 1

⎤⎥⎥⎥⎥⎦
∼
⎡⎢⎢⎢⎢⎣

1 0

0 1

⎤⎥⎥⎥⎥⎦
.
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The corresponding elementary matrices are then

P12 =
⎡⎢⎢⎢⎢⎣

0 1

1 0

⎤⎥⎥⎥⎥⎦
A12(−3) =

⎡⎢⎢⎢⎢⎣

1 0

−3 1

⎤⎥⎥⎥⎥⎦
M2(1/3) =

⎡⎢⎢⎢⎢⎣

1 0

0 1/3

⎤⎥⎥⎥⎥⎦
A21(−2) =

⎡⎢⎢⎢⎢⎣

1 −2
0 1

⎤⎥⎥⎥⎥⎦
.

We can now write T as

T (v) = Av =
⎡⎢⎢⎢⎢⎣

0 1

1 0

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

1 0

3 1

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

1 0

0 3

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

1 2

0 1

⎤⎥⎥⎥⎥⎦
v.

Here, we know that T consists of a shear parallel to x-axis, followed by a stretch in the y-direction, followed

by a shear parallel to the y-axis, rounded up by a reflection in y = x.

6.3 The Kernel and Range of a Linear Transformation

If T ∶ V →W is any linear transformation, there is an associated homogeneous linear vector equation T (v) = 0.

Definition 6.10: Kernel

Let T ∶ V →W be a linear transformation. The set of all vectors v ∈ V such that T (v) = 0 is called the kernel

of T . Mathematically,

Ker(T ) = {v ∈ V ∶ T (v) = 0} .

We see that the concept of kernel is exactly same as null space. We often use kernel in linear transformations and

null space in vector spaces, but they can be interchangeable.

Definition 6.11: Range

The range of the linear transformation T ∶ V → W is the subset of W consisting of all transformed vectors

from V . Mathematically,

Rng(T ) = {T (v) ∶ v ∈ V } .

We see that every vector in Ker(T ), including the zero vector in the domain, is mapped to the zero vector in W .

Considering that the kernel is exactly the null space, then it is also a subspace of Rn. It then follows that for

a linear transformation T ∶ Rn → Rm, the range can be represented as the column space of the matrix of T ,

A = [a1, a2, ..., an], so Rng(T ) is a subspace of Rm.

Example 6.12. Let T ∶ R3 → R2 be the linear transformation with matrix A =
⎡⎢⎢⎢⎢⎣

1 −2 5

−2 4 −10

⎤⎥⎥⎥⎥⎦
. We want to

determine the kernel and range of T .

To determine the kernel, we need to find the solution set to Ax = 0. Considering A ∼
⎡⎢⎢⎢⎢⎣

1 −2 5

0 0 0

⎤⎥⎥⎥⎥⎦
gives

x1 = 2r − 5s, x2 = r, x3 = s. Hence,

Ker(T ) = {x ∈ R3 ∶ x = (2r − 5s, r, s), r, s ∈ R} .
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Here, Ker(T ) is the two-dimensional subspace of R3 spanned by (2,1,0) and (−5,0,1). The linear transfor-

mation maps all points on the subspace to the zero vector in R2.

Since T is a matrix transformation,

Rng(T ) = colspace(A) = {y ∈ R2 ∶ y = r(1,−2), r ∈ R} .

Now we understand T better: T maps all points in R3 onto the line of Rng(T ), a one-dimensional subspace

of R2. Specifically, Ker(T ) is mapped onto the zero vector in R2.

The example gives us important information regarding Ker(T ) and Rng(T ):

Ker(t) = nullspace(A) ⊂ Rn Rng(T ) = colspace(A) ⊂ Rm

Theorem 6.13

If T ∶ V →W is a linear transformation, then

(1) Ker(T ) is a subspace of V .

(2) Rng(T ) is a subspace of W .

Proof. We know that both Ker(T ) and Rng(T ) include the zero vector and are subsets of their respective vector

space, establishing closeness under addition and scalar multiplication suffices.

(1) If v1, v2 ∈ Ker(T ), then T (v1) = 0 and T (v2) = 0. Consider T (v1 + v2) and T (cv1), we have

T (v1 + v2) = T (v1) + T (v2) = 0 T (cv1) = cT (v1) = 0

As 0 ∈ Ker(T ), Ker(T ) is closed under addition and scalar multiplication. Thus, Ker(T ) is a subspace of V .

(2) If w1,w2 ∈ Rng(T ), then w1 = T (v1) and w2 = T (v2) for some v1, v2 ∈ V . Thus,

w1 +w2 = T (v1) + T (v2) = T (v1 + v2) cw1 = cT (v1) = T (cv1)

This means both w1 + w2 and cw1 are in Rng(T ) as they are output of T . Hence, Rng(T ) is closed under

addition and scalar multiplication, and it follows that Rng(T ) is a subspace of W .
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Theorem 6.14: The general rank-nullity theorem

If T ∶ V →W is a linear transformation and V is finite-dimensional, then

dim[Ker(T )] + dim [Rng(T )] = dim[V ]

Proof. Suppose that dim[V ] = n. We consider three cases:

Case 1. If dim [Ker(T )] = n, then Ker(T ) = V (Goode Corollary 4.6.14: if dim[V ] = n and S is a subspace of V ,

then if dim[S] = n, S = V ), that T (v) = 0 for every v ∈ V . Now we know that Rng(T ) only includes the zero

vector, so its dimension is zero. The general R-N theorem holds.

Case 2. If dim [Ker(T )] = k, where 0 < k < n, then the basis for Ker(T ) is {v1, v2, ..., vk}. We can extend the

basis to a basis for V : v1, v2, ..., vk, vk+1, ..., vn. It suffices to prove that T (vk+1), T (vk+2), ..., T (vn) is a basis for

Rng(T ). Consider w ∈ Rng(T ), then w = T (v) for some v ∈ V . We then have v = c1v1 + c2v2 + ... + cnvn for some

c1, c2, ..., cn. Hence,

w = T (v) = c1T (v1) + c2T (v2) + ... + cnT (vn).

Since v1, v2, ..., vk ∈ Ker(T ), w = 0 + 0 + ... + 0 + ck+1T (vk+1) + ck+2T (vk+2) + ... + cnT (vn). Thus,

Rng(T ) = span{T (vk+1, T (vk+2), ..., T (vn)} .

Now we show that the vectors in the span is linearly independent. Suppose that

dk+1T (vk+1) + dk+2T (vk+2) + ... + dnT (vn) = 0,

then it also follows that T (dk+1vk+1 + dk+2vk+2 + ... + dnvn) = 0, hence dk+1vk+1 + dk+2vk+2... + dnvn ∈ Ker(T ).
Consequently, there exists d1, d2, ..., dk such that

dk+1vk+1+dk+2vk+2+...+dnvn = d1v1+d2v2+...+dkvk ⇒ d1v1+d2v2+..+dkvk−(dk+1vk+1+dk+2vk+2+...+dnvn) = 0.

Here is an important catch: the set of vectors v1, v2, ..., vk, vk+1, ..., vn is linearly independent as it is the basis of V .

Hence, the only solution to the system is d1 = d2 = ... = dk = dk+1 = ... = dn = 0. Thus, {T (vk+1), T (vk+2), ..., T (vn)}
is linearly independent, so it is a basis for Rng(T ), and dim[Rng(T )] = n − k. It follows that

dim[Ker(T )] + dim[Rng(T )] = k + (n − k) = n = dim[V ].

Case 3. If dim[Ker(T )] = 0, then Ker(T ) only includes the zero vector. Then we can let {v1, v2, ..., vn} be any

basis for V . We use a similar argument to case 2 here. Consider w ∈ Rng(T ), then w = T (v) for some v ∈ V .

Rng(T ) = span{T (v1), T (v2), ..., T (vn)} .

Now suppose that d1T (v1)+d2T (v2)+ ...+dnT (vn) = 0, then T (d1v1+d2v2+ ...+dnvn) = 0 We already know that

the set of vectors v1, v2, ..., vn is linearly independent as it is the basis of V , so similarly, {T (v1), T (v2), ..., T (vn)}
is also linear independent, so it is a basis for Rng(T ), and dim[Rng(T )] = n. Again, we have

dim[Ker(T )] + dim[Rng(T )] = 0 + n = n = dim[V ].
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6.4 Additional Properties of Linear Transformations

We want to establish that all real vector spaces of a finite dimension n are essentially the same as Rn, and we do so

in this section by considering the composition of linear transformations.

Definition 6.15: Composition of linear transformations

Consider T1 ∶ U → V and T2 ∶ V →W be two linear transformations. We define the composition, or product,

T2T1 ∶ U →W by:

(T2T1)(u) = T2(T1(u)) ∀u ∈ U.

Theorem 6.16

Let T1 ∶ U → V and T2 ∶ V →W be linear transformations. Then T2T1 ∶ U →W is a linear transformation.

Proof. Consider arbitrary vectors u1, u2 ∈ U , and c ∈ R. It suffices to prove (T2T1)(u1+u2) = (T2T1)u1+(T2T1)u2
and (T2T1)(cu1) = c(T2T1)(u1). The first equation can be proven as follows:

(T2T1)(u1 + u2) = T2(T1(u1 + u2))

= T2(T1(u1) + T1(u2))

= T2(T1(u1)) + T2(T1(u2))

= (T2T1)(u1) + (T2T1)(u2).

And, the second equation, as follows:

(T2T1)(cu1) = T2(T1(cu1))

= T2(cT1(u1))

= cT2(T1(u1))

= c(T2T1)(u1).

Note that the outputs from the linear transformation T1 become the inputs for the linear transformation T2 when

computing the composition T2T1. Hence, the commutative property does not hold. Even when both compositions

T1T2 and T2T1 make mathematical sense, they may not be the same linear transformation.

Example 6.17. Let T1 ∶ Rn → Rm and T2 ∶ Rm → Rp be linear transformations with matrices A and B

respectively. We want to determine the linear transformation T2T1 ∶ Rn → Rp.

We compute the linear transformation by directly using the definition.

(T2T1)(x) = T2(T1(x)) = T2(Ax) = B(Ax) = (BA)x.

Consequently, T2T1 is the linear transformation with matrix BA. Note that A is an m × n matrix, and B is a

p ×m matrix. BA is then defined with size p × n, which transforms Rn to Rp.
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Definition 6.18

A linear transformation T ∶ V →W is said to be

(1) one-to-one if distinct elements in V are mapped via T to distinct elements in W . This means, v1 ≠ v2 ∈
V implies T (v1) ≠ T (v2).

(2) onto if the range of T is the entirety of W . This means, if every w ∈W is the image under T of at least

one vector v ∈ V .

Theorem 6.19

Let T ∶ V →W be a linear transformation. Then T is one-to-one if and only if Ker(T ) = {0}.

Proof. Since T is a linear transformation, T (0) = 0. If T is one-to-one, there can be no other vector v ∈ V
satisfying T (v) = 0, otherwise it would contradict with the definition. Hence, Ker(T ) = {0}.

Conversely, suppose that Ker(T ) = {0}. If v1 ≠ v2, then v1 − v2 ≠ 0, and therefore T (v1 − v2) ≠ 0. The linearity

property follows, giving T (v1) − T (v2) ≠ 0. Hence, T (v1) ≠ T (v2), and T is one-to-one.

Now we have reached the conclusion that the linear transformation T ∶ V →W is one-to-one if and only if Ker(T ) =
{0}, and onto if and only if Rng(T ) =W .

Example 6.20. Consider the transformation T ∶ P2(R) → P2(R) defined by

T (a + bx + cx2) = (2a − b + c) + (b − 2a)x + cx2.

We want to determine whether T is one-to-one, onto, both, or neither.

We first test if T is one-to-one. Consider T (a+bx+cx2) = 0, then it must be satisfied that 2a−b+c = b−2a = c = 0.

Computing the system gives the solution c = 0, b = 2a, so Ker(T ) = {a(1 + 2x) ∶ a ∈ R}. Hence, T is not one-

to-one.

Then, we test if T is onto. As Ker(T ) = {a(1 + 2x)}, its dimension is one. Hence, dim[Rng(T )] = dim[V ]−1 =
2, which means Rng(T ) is a two-dimensional subspace of the three-dimensional vector space P2(R), so

clearly T is not onto. Thus, T is neither one-to-one nor onto.

If T ∶ V →W is both one-to-one and onto, then for each w ∈W , there is a unique v ∈ V such that T (v) = w. We can

therefore define a mapping T −1 ∶W → V by

T −1(w) = v⇔ w = T (v).

Definition 6.21: Inverse transformation

Let T ∶ V →W be a linear transformation. If T is both one-to-one and onto, then the linear transformation

T −1 ∶W → V defined by

T −1(w) = v⇔ w = T (v)

is called the inverse transformation to T .
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Theorem 6.22

Let T ∶ Rn → Rn be a linear transformation with matrix A. Then T −1 exists if and only if det(A) ≠ 0.

Furthermore, T −1 ∶ Rn → Rn is a linear transformation with matrix A−1.

Proof. Consider the kernel of T . T is one-to-one if and only if Ker(T ) = {0}, i.e., if and only if the linear system

Ax = 0 has only the trivial solution, which is true if and only if det(A) ≠ 0. Furthermore,

Rng(T ) = {Ax ∶ x ∈ Rn} = colspace(A).

Consequently, the following statements are equivalent:

(1) T is onto.

(2) colspace(A) = Rn.

(3) The column vectors of A span Rn.

(4) det(A) ≠ 0.

Finally, if det(A) ≠ 0, then A−1 exists, so that T (x) = y⇔ Ax = y⇔ x = A−1y. Thence, T −1(y) = A−1y, from which

it follows that T −1 is itself a linear transformation with matrix A−1.

Definition 6.23: Isomorphism

Let V and W be vector spaces. If there exists a linear transformation T ∶ V →W that is both one-to-one and

onto, we call T an isomorphism, and we say that V and W are isomorphic vector spaces, V ≅W .

Example 6.24. We want to determine an isomorphism T ∶ R3 → P2(R).
We do this by considering an arbitrary vector in P2(R), expressed as a0 + a1x + a2x2. Consequently, an

isomorphism between R3 and P2(R) can be defined by T (a0, a1, a2) = a0 + a1x + a2x2.

Theorem 6.25

Let A be an n × n matrix with real elements, and let T ∶ Rn → Rn be the matrix transformation defined by

T (x) = Ax. The following conditions are equivalent:

(1) A is invertible.

(2) T is one-to-one.

(3) T is onto.

(4) T is an isomorphism.

Proof. The proof is trivial. (1) and (2) by IMT, (2) and (3) by Goode Prop 4.6.14, (3) and (4) by definition.
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6.5 The Matrix of a Linear Transformation

Definition 6.26: Matrix representation

Let V and W be vector spaces with ordered bases B = {v1, v2, ..., vn} and C = {w1,w2, ...,wm}, respectively,

and let T ∶ V →W be a linear transformation. The m × n matrix

[T ]CB = [[T (v1)]C , [T (v2)]C , ..., [T (vn)]C]

is called the matrix representation of T relative to the bases B and C. For V =W and B = C, we refer to

[T ]BB as the matrix representation of T relative to the basis B.

Example 6.27. Consider the linear transformation T ∶ P1(R) → P2(R) defined by

T (a + bx) = (2a − 3b) + (b − 5a)x + (a + b)x2.

We want to determine the matrix representation of T relative to the bases B = {1, x} and C = {1, x, x2}.

We first have T (1) = 2 − 5x + x2 and T (x) = −3 + x + x2. So

[T (1)]C =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2

−5
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

[T (x)]C =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−3
1

1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⇒ [T ]CB =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2 −3
−5 1

1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

Theorem 6.28

Let V and W be vector spaces with ordered bases B and C, respectively. If T ∶ V → W is a linear transfor-

mation and v is any vector in V , then

[T (v)]C = [T ]CB[v]B .

Proof. Let B = {v1, v2, ..., vn}, and consider v ∈ V . As v = a1v1 + a2v2 + ... + anvn,

[T ]CB[v]B = a1[T (v1)]C + a2[T (v2)]C + ... + an[T (vn)]C = [T (v)]C .

We now consider the composition of linear transformations and how they can be represented with matrix represen-

tations with respect to respective bases.

Theorem 6.29

If U , V , W are vector spaces with ordered bases A, B, and C, and T1 ∶ U → V and T2 ∶ V → W are linear

transformations, then

[T2T1]CA = [T2]CB[T1]BA .

Proof. It suffices to show that premultiplying any column vector [u]A gives the same result. Here,

[T2]CB[T1]BA[u]A = [T2]CB[T1(u)]B = [T2(T1(u))]C = [(T2T1)u]C = [T2T1]CA[u]A.
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Now, because of the close relationship between the matrix representation of linear transformation and the linear

transformation itself, the following theorem can be established.

Theorem 6.30

Let T ∶ V →W be a linear transformation, and let B and C be ordered bases for V and W , respectively. Then

(1) For all v ∈ V , v ∈ Ker(T ) if and only if [v]B ∈ nullspace([T ])CB .

(2) For all w ∈W , w ∈ Rng(T ) if and only if [w]C ∈ colspace([T ]CB).

Corollary 6.31

Let T ∶ V →W be a linear transformation, and let B and C be ordered bases for V and W respectively. Then

(1) T is one-to-one if and only if nullspace([T ]CB) = {0}.

(2) T is onto if and only if colspace([T ]CB = Rn, where n = dim[W ].

Given an invertible linear transformation T with matrix representation [T ]CB , we can now use matrices to determine

the inverse linear transformation T −1. As [T −1]BC[T ]CB = [I]BB and [T ]CB[T −1]BC = [I]CC , we can get that ([T ]CB)−1 =
[T −1]BC .

Example 6.32. Let T ∶ P2(R) → P2(R) be defined via

T (a + bx + cx2) = (3a − b + c) + (a − c)x + (4b + c)x2.

(a) Find the matrix representation of T relative to the standard basis B = {1, x, x2} on P2(R).

We do this problem by considering T (1) = 3 + x, T (x) = −1 + 4x2, and T (x2) = 1 − x + x2. Hence,

[T ]BB =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

3 −1 1

1 0 −1
0 4 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

(b) Use the matrix in part (a) to prove that T is invertible.

det[T ]BB = −12 + 1 − 4 = −15 ≠ 0. Hence, [T ]BB is invertible, so T is invertible.

(c) Determine the linear transformation T −1 ∶ P2(R) → P2(R) by using the matrix representation of T −1

relative to B = {1, x, x2}.

[T −1]BB = ([T ]BB)−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

3 −1 1

1 0 −1
0 4 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

−1

= 1

17

⎡⎢⎢⎢⎢⎢⎢⎢⎣

4 5 1

−1 3 4

4 −12 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

Thus, T −1(a + bx + cx2) = 1
17

[(4a + 5b + c) + (−a + 3b + 4c)x + (4a − 12b + c)x2].
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7 Eigenvalues and Eigenvectors

7.1 The Eigenvalue/Eigenvector Problem

Definition 7.1: Eigenvalue and eigenvector

Let A be an n × n matrix. Any values of λ for which

Av = λv

has nontrivial solutions v are called the eigenvalues of A. The corresponding nonzero vectors v are called

eigenvectors of A. (They are also referred to as characteristic values and characteristic vectors of A.)

Consider A as the matrix of a linear transformation T ∶ Cn → Cn. We restrict our attention to real A and λ, focusing

only on Rn.

The eigenvectors of A are nonzero vectors that are mapped into a constant scalar multiple of themselves by T .

Geometrically, the linear transformation leaves the direction of v unchanged.

Note that if Av = λv and c is a scalar, then

A(cv) = cAv = c(λv) = λ(cv).

Consequently, if v is an eigenvector of A, then so is cv for any nonzero scalar c.

The solution of the eigenvalue/eigenvector problem is equivalent to solving

(A − λI)v = 0

The eigenvalues of A are those values of λ for which the n × n linear system has nontrivial solutions, and the

eigenvectors are the corresponding solutions.

Hence, the eigenvalue/eigenvector problem can be solved as follows:

(1) Find all scalars λ with det(A − λI) = 0. These are the eigenvalues of A.

(2) If λ1, λ2, ..., λk are the distinct eigenvalues in (1), then solving k systems of linear equations

(A − λiI)vi = 0

to find all eigenvectors vi corresponding to each eigenvalue.

Definition 7.2: Characteristic polynomial and characteristic equation

For a given n × n matrix A, the polynomial p(λ) defined by

p(λ) = det(A − λI)

is called the characteristic polynomial of A, and the equation

p(λ) = 0

is called the characteristic equation of A.
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Example 7.3. Find all eigenvalues and eigenvectors of A =
⎡⎢⎢⎢⎢⎣

3 −1
−5 −1

⎤⎥⎥⎥⎥⎦
.

The linear system is (A − λI)v = 0, so we have

⎡⎢⎢⎢⎢⎣

3 − λ −1
−5 −1 − λ

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

v1

v2

⎤⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎣

0

0

⎤⎥⎥⎥⎥⎦
.

The system has nontrivial solutions if (3 − λ)(−1 − λ) − 5 = 0, giving λ = {−2,4}.

Eigenvalue λ1 = −2: (A − λ1I)v = 0⇒
⎡⎢⎢⎢⎢⎣

5 −1 0

−5 1 0

⎤⎥⎥⎥⎥⎦
∼
⎡⎢⎢⎢⎢⎣

1 −0.2 0

0 0 0

⎤⎥⎥⎥⎥⎦
. The solution is then v = r(1,5).

Eigenvalue λ2 = 4: (A − λ2I)v = 0⇒
⎡⎢⎢⎢⎢⎣

−1 −1 0

−5 −5 0

⎤⎥⎥⎥⎥⎦
∼
⎡⎢⎢⎢⎢⎣

1 1 0

0 0 0

⎤⎥⎥⎥⎥⎦
. The solution is then v = s(−1,1).

Theorem 7.4

Let A be an n×n matrix with real elements. If λ is a complex eigenvalue of A with corresponding eigenvector

v, then λ is the eigenvalue of A with corresponding eigenvector v.

Proof. If Av = λv, then Av = λv, which implies Av = λv, since A has real entries.

7.2 General Results for Eigenvalues and Eigenvectors

For a given n × n matrix A = [aij], the characteristic polynomial p(λ) assumes the form

p(λ) = det(A − λI) =

RRRRRRRRRRRRRRRRRRRRRRRRR

a11 − λ a12 ... a1n

a21 a22 − λ ... a2n

⋮ ⋮ ⋱ ⋮
an1 an2 ... ann − λ

RRRRRRRRRRRRRRRRRRRRRRRRR

.

Expanding the determinant yields a polynomial of degree n in λ with leading coefficient (−1)n. It follows that

p(λ) = (−1)n(λ − λ1)m1(λ − λ2)m2 ...(λ − λk)mk , so m1 +m2 + ... +mk = n by the fundamental theorem of algebra.

Thus, associated with each eigenvalue λi is a number mi, called the multiplicity of λi.

Definition 7.5: Eigenspace

Let A be an n × n matrix. For a given eigenvalue λi, let Ei denote the set of all vectors v satisfying Av = λiv.

Then Ei is called the eigenspace of A corresponding to the eigenvalue λi. Ei is the solution set to the linear

system (A − λiI)v = 0.

Example 7.6. We want to determine the eigenspaces for the matrix A =
⎡⎢⎢⎢⎢⎣

3 −1
−5 −1

⎤⎥⎥⎥⎥⎦
. We do this by consider-

ing the eigenvectors v = r(1,5), v = s(−1,1). Then we have

E = {v ∈ R ∶ v = r(1,5) ∪ s(−1,1), r, s ∈ R} .
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From the above example, we have one main result for eigenspaces. Let λi be an eigenvalue of A of multiplicity mi

and let Ei denote the corresponding eigenspace. Then for each i, Ei is a subspace of Cn, and the dimension of the

eigenspace corresponding to λi is at most the multiplicity of λi.

Example 7.7. We want to determine all eigenspaces and their dimensions for the matrix A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

3 −1 0

0 2 0

−1 1 2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

The characteristic polynomial is p(λ) = −(λ − 2)2(λ − 3), giving λ1 = 2, λ2 = 3.

For λ1 = 2, we have A# =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 0 0

0 0 0 0

−1 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, which gives the general solution system v = r(1,1,0) + s(0,0,1),

so E1 = {v ∈ R3 ∶ v = r(1,1,0) + s(0,0,1), r, s ∈ R}. Hence, we have dim[E1] = 2, so n1 = 2.

For λ2 = 3, we have A# =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 −1 0 0

0 −1 0 0

−1 1 −1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, which gives the general solution system v = t(1,0,−1), so

E2 = {v ∈ R3 ∶ v = t(1,0,−1), t ∈ R}. Hence, we have dim[E2] = 1, so n2 = 1.

Theorem 7.8

Eigenvectors corresponding to distinct eigenvalues are linearly independent.

Proof. We use induction to prove the result. Let λ1, λ2, ..., λm be distinct eigenvalues of A with corresponding

eigenvectors v1, v2, ..., vm. It is true that {v1} is linearly independent. Now suppose {v1, v2, ..., vk} is linearly

independent for some k <m. Consider the set {v1, v2, ..., vk, vk+1}, we consider

c1v1 + c2v2 + ... + ckvk + ck+1vk+1 = 0.

Premultiplying both sides by A gives

c1λ1v1 + c2λ2v2 + ... + ckλkvk + ck+1λk+1vk+1 = 0.

As ck+1vk+1 = −(c1v1 + c2v2 + ... + ckvk), we rewrite the equation as

c1λ1v1 + c2λv2 + ... + ckλkvk − λk+1(c1v1 + c2v2 + ... + ckvk) = 0⇒ c1(λ1 − λk+1)v1 + ... + ck(λk − λk+1)vk = 0.

Since v1, v2, ..., vk are linearly independent, this implies that ci(λi − λk+1) = 0 for 1 ⩽ i ⩽ k. As the eigenvalues

are distinct, the only solution is c1 = c2 = ... = ck = 0, so that the vectors are linearly independent.

Definition 7.9: Nondefective matrices

An n × n matrix A that has n linearly independent eigenvectors is called nondefective. We say that A has a

complete set of eigenvectors. If A has less than n linearly independent eigenvectors, it is called defective.

If A is nondefective, then any set of n linearly independent eigenvectors of A is a basis for Rn. Such a basis is

referred to as an eigenbasis of A.
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Example 7.10. We want to determine whether A =
⎡⎢⎢⎢⎢⎣

−1 1

−1 −3

⎤⎥⎥⎥⎥⎦
is defective or not.

The characteristic polynomial of A is p(λ) = λ2 + 4λ + 4 = (λ + 2)2.
Thus, λ1 = −2 is an eigenvalue of multiplicity 2. The eigenvectors of A have the form v = r(−1,1). Here, we

see that the eigenspace is spanned by one vector, thus dim[E1] = 1 < 2, and hence A is defective.

Theorem 7.11

An n×n matrix A is nondefective if and only if the dimension of each eigenspace is the same as the algebraic

multiplicity mi of the corresponding digenvalue.

Proof. Suppose that A is nondefective, with eigenspaces E1,E2, ...,Ek of dimensions n1, n2, ..., nk, respectively.

Since A is nondefective, n1 + n2 + ... + nk = n. If ni <mi for some i, then we have

n = n1 + n2 + ... + nk <m1 +m2 + ... +mk = n,

a clear contradiction. Thus, ni = mi for each i, which is equivalent to the statement that the dimension of each

eigenspace is the same as the algebraic multiplicity of the eigenvalue.

Conversely, if ni =mi for each i, then

n =m1 +m2 + ... +mk = n1 + n2 + ... + nk,

which means that the union of the linearly independent eigenvectors that span each eigenspace consists of n

eigenvectors of A, and this union is linearly independent. Thus, A has n linearly independent eigenvectors.

7.3 Diagonalization

Consider the linear system of differential equations

dx1/dt = a11x1 + a12x2, dx2/dt = a21x1 + a22x2.

We can then write this as a vector equation x′ = Ax, where

x =
⎡⎢⎢⎢⎢⎣

x1

x2

⎤⎥⎥⎥⎥⎦
, x′ =

⎡⎢⎢⎢⎢⎣

x′1

x′2

⎤⎥⎥⎥⎥⎦
, A = [aij]

Suppose we make a linear change of variables defined by x = Sy, where S is an invertible matrix. Then,

x′ = Sy′ ⇒ Sy′ = ASy.

Premutiplying by S−1 yields y′ = By, where B = S−1AS. The question is whether it is possible to choose S such that

y′ = By can be integrated. We then lead to the definition of similar matrices.

Definition 7.12: Similar matrices

Let A and B be n × n matrices. We say A is similar to B if there exists an invertible matrix S such that

B = S−1AS.
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Example 7.13. If A =
⎡⎢⎢⎢⎢⎣

2 0

−1 1

⎤⎥⎥⎥⎥⎦
and B =

⎡⎢⎢⎢⎢⎣

22 6

−70 −19

⎤⎥⎥⎥⎥⎦
, we want to verify that B = S−1AS, where S =

⎡⎢⎢⎢⎢⎣

7 2

3 1

⎤⎥⎥⎥⎥⎦
.

It is obvious that S−1 =
⎡⎢⎢⎢⎢⎣

1 −2
−3 7

⎤⎥⎥⎥⎥⎦
, so S−1AS =

⎡⎢⎢⎢⎢⎣

1 −2
−3 7

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

2 0

−1 1

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

7 2

3 1

⎤⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎣

22 6

−70 −19

⎤⎥⎥⎥⎥⎦
= B.

Theorem 7.14

Similar matrices have the same eigenvalues.

Proof. If A is similar to B, then B = S−1AS for some invertible matrix S. Thus,

det(B − λI) = det(S−1AS − λI) = det(S−1AS − λS−1S)

= det(S−1(A − λI)S) = det(S−1)det(A − λI)det(S)

= det(A − λI).

We see that A and B = S−1AS have the same eigenvalues λ1, λ2, ..., λn. Furthermore, we also know that the simplest

possible matrix that has these eigenvalues is S−1AS = diag(λ1, λ2, ..., λn). This leads to the question: for an n × n
matrix A, when does an invertible matrix S exist such that S−1AS = diag(λ1, λ2, ..., λn)?
We provide the answer in the next theorem.

Theorem 7.15

An n×n matrix A is similar to a diagonal matrix if and only if A is nondefective. In such a case, if v1, v2, ..., vn

denote n linearly independent eigenvectors of A and S = [v1, v2, ..., vn], then

S−1AS = diag(λ1, λ2, ..., λn),

where λ1, λ2, ..., λn are the eigenvalues of A corresponding to the eigenvectors v1, v2, ..., vn.

Proof. If A is similar to a diagonal matrix, then there exists an invertible matrix S = [v1, v2, ..., vn] such that

S−1AS = D, where D = diag(λ1, λ2, ..., λn). From theorem 7.3.3, λ1, λ2, ..., λn are the eigenvalues of A. Premul-

tiplying both sides by S gives AS = SD, or equivalently,

Av1 = λ1v1, Av2 = λ2v2, ..., Avn = λnvn.

Consequently, v1, v2, ..., vn are eigenvectors of A corresponding to the eigenvalues λ1, λ2, ..., λn. Further, since

det(S) ≠ 0, the eigenvectors are linearly independent.

Conversely, suppose A is nondefective, and let S = [v1, v2, ..., vn], where {v1, v2, ..., vn} is any complete set of

eigenvectors of A. Then

AS = A [v1, v2, ..., vn] = [Av1,Av2, ...,Avn] = [λ1v1, λ2v2, ...., λnvn] .
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This is equivalent to AS = SD, where D = diag(λ1, λ2, ..., λn). Since the columns of S form a linearly indepen-

dent set, det(S) ≠ 0, and hence S is invertible. Premultiplying both sides of AS = SD by S−1 gives

S−1AS =D.

Definition 7.16: Diagonalizable matrix

An n × n matrix that is similar to a diagonal matrix is said to be diagonalizable.

Example 7.17. We want to determine all solutions to x′1 = 9x1 + 6x2, x′2 = −10x1 − 7x2.

Consider x′ = Ax, where A =
⎡⎢⎢⎢⎢⎣

9 6

−10 −7

⎤⎥⎥⎥⎥⎦
. The transformed system is y′ = (S−1AS)y, where x = Sy. To

determine S, we need the eigenvalues and eigenvectors of A. The characteristic polynomial is p(λ) =
(λ − 3)(λ + 1). From this we know that A is nondefective, v = r(−1,1) and v = s(−3,5).

Setting S =
⎡⎢⎢⎢⎢⎣

−1 −3
1 5

⎤⎥⎥⎥⎥⎦
gives S−1AS = diag(3,−1), so that the system is

⎡⎢⎢⎢⎢⎣

y′1

y′2

⎤⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎣

3 0

0 −1

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

y1

y2

⎤⎥⎥⎥⎥⎦
.

From this, we get y′1 = 3y1, y′2 = −y2, which gives y1(y) = c1e3t, y2(t) = c2e−t.
Consequently, x1(t) = −c1e3t − 3c2e

−t and x2(t) = c1e3t + 5c2e
t.
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8 Linear Differential Equations of Order n

In Chapter 1, we developed techniques that enabled us to solve first-order linear differential equations. However,

there are lots of equations that are of orders greater than one, so those techniques will not be as useful when dealing

with, say, the RLC circuit:

L
d2q

dt2
+Rdq

dt
+ 1

C
q = E(t).

Recall that any such differential equation can be written in the form

a0(x)y(n) + a1(x)y(n−1) + ... + an−1(x)y′ + an(x)y = F (x),

where a0, a1, ..., an, F are functions defined an interval I. In this chapter, we will apply the results from chapters 4

and 6 to develop a theory for the solution of such equations, primarily through three steps:

(1) Reformulate the problem in the equivalent form

Ly = F,

where L is an appropriate linear transformation.

(2) Establish that the set of all solutions to the associated homogeneous differential equation

Ly = 0

is a vector space of dimension n, so that every solution to the homogeneous differential equation can expressed

as

y(x) = c1y(x) + c2y2(x) + ... + cnyn(x),

where {y1, y2, ..., yn} is any linearly independent set of n solutions to Ly = 0.

(3) Establish that every solution to the nonhomogeneous problem Ly = F is of the form

y(x) = c1y1(x) + c2y2(x) + ... + cnyn(x) + yp(x),

where yp(x) is any particular solution to the nonhomogeneous equation.

8.1 General Theory for Linear Differential Equations

Recall that D ∶ C1(I) → C0(I) defined by D(f) = f ′ is a linear transformation. We call D the derivative operator.

Higher-order derivative operators have Dk ∶ Ck(I) → C0(I) defined by

Dk =D(Dk−1), k = 2,3, ...⇒Dk(f) = d
kf

dxk

Taking a linear combination of the basic derivative operators, the general linear differential operator of order n is:

L =Dn + a1Dn−1 + ... + an−1D + an,

and is defined by

Ly = y(n) + a1y(n−1) + ... + an−1y′ + any.
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Now consider the general n-th order linear differential equation

a0(x)y(n) + a1(x)y(n−1) + ... + an−1(x)y′ + an(x)y = F (x),

where a0, a1, ..., an and F are functions specified on an interval I. If F (x) is identically zero on I, then the differ-

ential equation is homogeneous. Otherwise, it is nonhomogeneous. Assuming that a0(x) is nonzero on I, we can

divide the differential equation by a0 to obtain the following standard form:

y(n) + a1(x)y(n−1) + ... + an−1(x)y′ + an(x)y = F (x) ⇒ Ly = F (x).

Theorem 8.1: General existence and uniqueness theorem

Let a1, a2, ..., an and F be functions that are continuous on an interval I. Then, for any x0 ∈ I, the initial-value

problem

Ly = F (x)

y(x0) = y0, y′(x0) = y1, ..., y(n−1)(x0) = yn−1

has a unique solution on I.

We don’t formalize the proof for the general existence and uniqueness theorem here, as it requires concepts from

calculus, namely the Lebesgue’s Dominated Convergence Theorem.

The differential equation is said to be regular on I if the functions a1, a2, ..., an, F are continuous on I. For now, we

always assume that the differential equations are regular on the interval of interest.

We first consider the n-th order linear homogeneous differential equation

y(n) + a1(x)y(n−1) + ... + an−1(x)y′ + an(x)y = 0

on an interval I. This can be written as the operator equation Ly = 0, where L ∶ Cn(I) → C0(I) is defined by

L =Dn + a1Dn−1 + ... + an−1D + an.

Let the set of all solutions be S, it is clear that

S = {y ∈ Cn(I) ∶ Ly = 0} = Ker(L).

As the kernel of any linear transformation T ∶ V → W is a subspace of V , the set of all solutions to the differential

equation is a subspace of Cn(I). This subspace is referred to as the solution space of the differential equation. If

we can determine the dimension of S, then we will know how many linearly independent solutions are required to

span the solution space.

Theorem 8.2

The set of all solutions to the regular n-th order homogeneous linear differential equation

y(n) + a1(x)y(n−1) + ... + an−1(x)y′ + an(x)y = 0

on an interval I is a vector space of dimension n.
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Proof. Consider the operator form Ly = 0. To prove the dimension of the solution space is n, we must establish

the existence of a basis consisting of n solutions.

Let y1, y2, ..., yn be the n solutions satisfying the initial value problems

Ly1 = 0, y1(x0) = 1, y′1(x0) = ... + y(n−1)(x0) = 0

Ly2 = 0, y′2(x0) = 1, y2(x0) = ... + y(n−1)(x0) = 0

...

Lyn = 0, y(n−1)n (x0) = 0, yn(x0) = ... = y(n−2)(x0) = 0

Consider the Wronskian of these solutions: W = 1 ≠ 0, implying that all n solutions are linearly independent. In

addition to that, L is indeed a linear transformation satisfying

L(ky) = kL(y) L(y1 + y2) = L(y1) +L(y2),

Hence, any solution to Ly = 0 can be written as a linear combination of the linearly independent solutions

y1, ..., yn, thus these solutions span the solution space. The proof follows immediately.

It follows from the previous theorem that any set of n linearly independent solutions {y1, y2, ..., yn} to

y(n) + a1(x)y(n−1) + ... + an−1(x)y′ + an(x)y = 0

is a basis for the solution space of this differential equation. Consequently, every solution can be written as

y(x) = c1y1(x) + c2y2(x) + ... + cnyn(x),

where c1, c2, ..., cn are constants. y(x) is referred to as the general solution to the differential equation.
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Example 8.3. We want to determine all solutions to the differential equation y′′ − 2y′ − 15y = 0 of the form

y(x) = erx, where r is a constant, and using this to determine the general solution.

We first consider y(x) = erx, then y′(x) = rerx and y′′(x) = r2erx. Substitution gives

erx(r2 − 2r − 15) = 0⇒ (r + 3)(r − 5) = 0

Hence, the two solutions to the differential equation are

y1(x) = e−3x y2(x) = e5x.

Furthermore, W = 8e2x ≠ 0, so that y1(x) and y2(x) are linearly independent on any interval. It follows that

the set of all solutions to the differential equation is {e−3x, e5x} and the general solution is

y(x) = c1e−3x + c2e5x.

Note that W ≠ 0 for all ranges of x. If W = 0 at some point of x, in section 4.5 we concluded that we wouldn’t be

able to draw any conclusion as to the linear dependence or linear independence of the solutions. We now show,

however, that the solutions are, in fact, linearly dependent.

Theorem 8.4

Let y1, y2, ..., yn be solutions to the regular n-th order differential equation Ly = 0 on an interval I, and let

W [y1, y2, ..., yn] (x) denote their Wronskian. If W = 0 at some point x0 ∈ I, then {y1, y2, ..., yn} is linearly

dependent on I.

Proof. Consider

W =

RRRRRRRRRRRRRRRRRRRRRRRRR

y1(x) y2(x) ... yn(x)
y′1(x) y′2(x) ... y′n(x)
⋮ ⋮ ⋱ ⋮

y
(n−1)
1 (x) y

(n−1)
2 (x) ... y

(n−1)
n (x)

RRRRRRRRRRRRRRRRRRRRRRRRR

.

Assuming W = 0, the system has a nontrivial solution (α1, ..., αn). We can now define u(x) as

u(x) = α1y1 + α2y2 + ... + αnyn.

Then, y = u(x) satisfies the initial-value problem

Ly = 0 y(x0) = y′(x0) = ... + y(n−1)(x0) = 0.

Consider the solution y(x) = 0, and by the existence and uniqueness theorem, we have

u(x) = α1y1 + α2y2 + ... + αnyn = 0.

Then, it naturally follows that {y1, y2, ..., yn} must be linearly dependent.

An important conclusion from the above theorem is that the Wronskian on an interval I completely characterizes

whether solutions to Ly = 0 are linearly dependent or linearly independent on I.
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Example 8.5. Consider y′′ + 4y = 0. We want to verify that y1(x) = cos 2x and y2(x) = 3(1 − 2 sin2 x) are

solutions for the differential equation on (−∞,∞) and we want to show that they are linearly dependent.

We first verify by direct substitution that

y′′1 + 4y1 = 0 y′′2 + 4y2 = 0.

To show linear dependency, we compute their Wronskian as follows:

W [y1, y2] (x) =
RRRRRRRRRRRRR

cos 2x 3(1 − 2 sin2 x)
−2 sin 2x −12 sinx cosx

RRRRRRRRRRRRR
= −6 cos 2x sin 2x + 6 sin 2x(1 − 2 sin2 x) = 0.

W = 0, so the solutions are linear dependent. In fact, considering cos 2x = 1 − 2 sin2 x, it is easy to see that

y2(x) = 3y1(x), and the second linearly independent solution to the differential equation is y3(x) = sin 2x.

We now consider the nonhomogeneous linear differential equation

y(n) + a1(x)y(n−1) + ... + an−1(x)y′ + an(x)y = F (x),

where F (x) is not identically zero on the interval of interest. If we set F (x) = 0, we obtain the associated homoge-

neous equation. In operator form, the nonhomogeneous and homogeneous equations have the forms

Ly = F, Ly = 0.

Theorem 8.6

Let {y1, y2, ..., yn} be a linearly independent set of solutions to Ly = 0 on an interval I, and let y = yp be any

particular solution to Ly = F on I. Then every solution to Ly = F on I is of the form

y = c1y1 + c2y2 + ... + cnyn + yp.

Proof. Since y = yp satisfies nonhomogeneous equation, we have

Lyp = F.

Let y = u be any solution to the differential equation, we also have Lu = F , which, combining with Lyp = F and

applying the linearity of L, gives

L(u − yp) = 0.

Thus, y = u − yp is a solution to the associated homogeneous equation and therefore can be written as

y − up = c1y1 + c2y2 + ... + cnyn ⇒ u = c1y1 + c2y2 + ... + cnyn + yp.

Hence, the general solution to the nonhomogeneous differential equation is

y(x) = yc(x) + yp(x),

where yc(x) = c1y1(x) + c2y2(x) + ... + cnyn(x). We refer to yc as the complementary function for Ly = F .
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Example 8.7. We want to first verify that yp(x) = 2e6x is a particular solution to the differential equation

y′′ − 2y′ − 15y = 18e6x

and use that to determine the general solution. To do so, we first verify by direct substitution. Consider

example 8.3, we have yc(x) = c1e−3x + c2e5x, giving

y(x) = c1e−3x + c2e5x + 2e6x.

We conclude our section with a simple theorem.

Theorem 8.8

If y = up and y = vp are particular solutions to Ly = f(x) and Ly = g(x), then y = up + vp is a solution to

Ly = f(x) + g(x).

Proof.

L(up + vp) = L(up) +L(vp) = f(x) + g(x).

8.2 Constant Coefficient Homogeneous Linear Differential Equations

In the next few sections we develop techniques for solving differential equations of order n that have constant

coefficients. These are differential equations with the form

y(n) + a1y(n−1) + ... + an−1y′ + any = F (x),

where a1, a2, ..., an are constants. To determine the general solution to this differential equation, we gin by analyzing

the associated homogeneous equation

y(n) + a1y(n−1) + ... + an−1y′ + any = 0.

Here, we consider the polynomial differential operator P (D):

P (D) =Dn + a1Dn−1 + ... + an−1D + an.

For the homogeneous case, P (D)y = 0. Associated with any polynomial differential operator is the real polynomial

P (r) = rn + a1rn−1 + ... + an−1r + an,

often referred to as the auxiliary polynomial. The corresponding polynomial equation

P (r) = 0

is called the auxiliary equation.
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Example 8.9. We want to write the differential equation y′′ + 5y′ − 7y = 0 as P (D)y = 0 for an appropri-

ate polynomial differential operator P (D). Then we want to determine the auxiliary polynomial and the

auxiliary equation. We do this by considering

(D2 + 5D − 7)y = 0 ≡ P (D)y = 0⇒ P (D) =D2 + 5D − 7.

Consequently, the auxiliary polynomial is P (r) = r2 + 5r − 7 and the equation is r2 + 5r − 7 = 0.

In general, the composition of two linear transformations is not commutative. However, even though L1L2 ≠ L2L1,

commutativity does hold for polynomial differential operators.

Theorem 8.10

If P (D) and Q(D) are polynomial differential operators, then

P (D)Q(D) = Q(D)P (D).

Proof. The proof is a direct verification, so is omitted here.

The commutativity of polynomial differential operators enables the factoring of polynomial differential factors.

Specifically, if P (D) is a polynomial differential operator of degree n, the auxiliary polynomial can be factored as

P (r) = (r − r1)m1(r − r2)m2 ...(r − rk)mk ,

where mi is the multiplicity of the root ri, and m1 +m2 + ... +mk = n. Consequently, we have

P (D) = (D − r1)m1(D − r2)m2 ...(D − rk)mk .

It follows that the differential equation P (D)y = 0 can be written as

(D − r1)m1(D − r2)m2 ...(D − rk)mky = 0.

Theorem 8.11

If P (D) = P1(D)P2(D)...Pk(D), then for each i, the solution to Pi(D)y = 0 is also a solution to P (D)y = 0.

Proof. Suppose Pi(D)u = 0 for some i. Then, we have

P (D) = P1(D)...Pi−1(D)Pi+1(D)...Pk(D)Pi(D),

hence

P (D)u = P1(D)...Pi−1(D)Pi+1(D)...Pk(D)Pi(D)u = 0.

Therefore, we see that any solutions to

(D − ri)miy = 0

will also be solutions to the differential equation. Our next step is to find the solutions to the equation above.
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Theorem 8.12

Lemma 8.12.1

Consider the differential operator (D−r)m, where m is a positive integer, and r is a complex number.

For any u ∈ Cm(I),
(D − r)m(erxu) = erxDm(u).

Proof. When m = 1, we have

(D − r)(erxu) = erxu′ + rerxu − rerxu = erxu′.

Repeating this procedure yields similar result. The proof follows by induction.

The differential equation, where m is a positive integer and r is a complex number, has the following n

solutions that are linearly independent on any interval:

erx, xerx, ..., xm−1erx.

Proof. Since

Dm(xk) = 0,

the lemma with u(x) = xk yields

(D − r)m(erxxk) = erxDm(xk) = 0,

and hence, erx, xerx, ..., xm−1erx are solutions to the differential equation (D−r)my = 0. Now we consider

the solution erx, there is

c1e
rx + c2xerx + c3x2erx + ... + cmxm−1erx = 0,

for x in any interval if and only if c1 = c2 = ... = cm = 0. Dividing by erx gives

c1 + c2x + ... + cmxm−1 = 0.

Since {1, x, x2, ..., xm−1} is linearly independent on any interval, it follows that

c1 = c2 = ... = cm = 0.

It follows that the given functions are indeed linearly independent on any interval.

We now apply the results of the above theorems to the differential equation

(D − r1)m1(D − r2)m2 ...(D − rk)mky = 0.

The solutions that are obtained due to a term of the form (D − r)m depend on whether r is real or complex.

Case 1. Consider the situation where r is real. Each factor of the form (D − r)m contributes the n linearly indepen-

dent solutions

erx, xerx, ..., xm−1erx.

Case 2. Consider the situation where r is imaginary. Since complex roots occur in conjugate pairs, each factor
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of the form (D − r)m must be accompanied by a term D − r)m. These complex conjugate terms contribute the

complex-valued solutions

e(a±ib)x, xe(a±ib)x, ..., xm−1e(a±ib)x.

Consider the two complex conjugate solutions

w1(x) = xke(a+ib)x = xkeax(cos bx + i sin bx) w2(x) = xke(a−ib)x = xkeax(cos bx − i sin bx).

Since these are both solutions to a linear homogeneous equation, any linear combination of them is also a solution

to the same equation. In particular, consider

y1(x) =
1

2
[w1(x) +w2(x)] = xkeax cos bx y2(x) =

1

2i
[w1(x) −w2(x)] = xkeax sin bx.

y1 and y2 are two corresponding real valued solutions. Repeating the process gives the set of real solutions:

eax cos bx, eax sin bx, xeax cos bx, xeax sin bx, ..., xm−1eax cos bx, xm−1eax sin bx.

We now summarize our results.

Theorem 8.13

Consider the differential equation P (D)y = 0. Let r1, ..., rk be the distinct roots of the auxiliary equation, so

that

P (r) = (r − r1)m1(r − r2)m2 ...(r − rk)mk ,

where mi denotes the multiplicity of the root r = ri.
If ri is real, then the functions erix, xerix, ..., xmi−1erix are linearly independent solutions to

the equation on any interval. If rj is complex, consider rj = a + ib, then the functions

eax cos bx, xeax cos bx, ..., xmj−1eax cos bx, eax sin bx, xeax sin bx, ..., xmj−1eax sin bx corresponding to the con-

jugate roots are linearly independent solutions on any interval.

The n real-valued solutions that are obtained by considering the distinct roots r1, r2, ..., rk are linearly inde-

pendent on any interval. Consequently, the general solution will then be

y(x) = c1y1(x) + c2y2(x) + ... + cnyn(x).

Example 8.14. We want to determine the general solution to y′′ − y′ − 2y = 0. To do so, we consider the

auxiliary polynomial P (r) = r2 − r − 2 = (r − 2)(r + 1). Therefore, the auxiliary equation has roots r1 = 2,

r2 = −1. It follows that the two linearly independent solutions are

y1(x) = e2x y2(x) = e−x.

Hence, the general solution to the differential equation is

y(x) = c1e2x + c2e−x.
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Example 8.15. We want to solve the initial-value problem y′′ + 4y′ + 4y = 0, y(0) = 1, y′(0) = 4. We first see

that the auxiliary equation r2 + 4r + 4 has the general solution

y(x) = c1e−2x + x2xe−2x = e−2x(c1 + c2x).

The initial condition y(0) = 1 implies that c1 = 1, and the initial condition y′(0) = 4 gives

y′(x) = −2e−2x(1 + c2x) + c2e−2x = 4⇒ c2 = 6.

Hence, the unique solution to the given initial-value problem is

y(x) = e−2x(1 + 6x).

8.3 The Method of Undetermined Coefficients: Annihilators

According to theorem 8.1.6, the general solution to the nonhomogeneous differential equation

P (D)y = F (x)

is of the form

y(x) = yc(x) + yp(x),

where yc is the general solution to the associated homogeneous differential equation and yp is one particular

solution. We have seen in section 8.2 how yc can be obtained, so we now turn our attention to determining a

particular solution yp. Consider the differential equation P (D)y = F (x), and suppose that there is a polynomial

differential operator A(D) such that

A(D)F = 0⇒ A(D)P (D)y = 0.

Note that any solution to P (D)y = F (x) must also solve A(D)P (D)y = 0. Consequently, by choosing the arbitrary

constants in the general solution of the latter appropriately, we must be able to obtain a particular solution to the

previous nonhomogeneous equation.

Example 8.16. We want to determine the general solution to (D + 3)(D − 3)y = 10e2x. We first compute

the auxiliary equation to obtain yc(x) = c1e−3x + c2e3x. The nonhomogeneous term is F (x) = 10e2x, so we

need a polynomial differential operator A(D) such that A(D)F = 0. Consider (D − 2)e2x = 0, so we have

A(D) =D − 2⇒ (D − 2)(D + 3)(D − 3)y = 0,

which has general solution

y(x) = c1e−3x + c2e3x +A0e
2x.

We call yp(x) = A0e
2x a trial solution for the differential equation, containing the undetermined coefficient

A0. In order to determine the appropriate value for A0, substitution gives

(D + 3)(D − 3)A0e
2x = 10e2x ⇒ A0(4e2x − 9e2x) = 10e2x.
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We must therefore choose A0 = −2 to satisfy the equation. Substituting the value for A0 yields the particular

solution yp(x) = −2e2x, and the general solution becomes

y(x) = yc(x) + yp(x) = c1e−3x + c2e3x − 2e2x.

This technique of method of undetrermined coefficients is applicable only to linear differential equations that

satisfy that the differential equation has constant coefficients, and that there exists a polynomial differential operator

A(D). Any polynomial A(D) is said to annihilate F (x), and the polynomial differential operator of lowest order

is called the annihilator of F .

More generally, a polynomial operator A(D) annihilates F (x) if and only if y = F (x) is a solution to

A(D)y = 0.

Thus, the only types of functions that can be annihilated by a polynomial differential operator are those that arise

as solutions to a homogeneous constant coefficient linear differential equation. That is,

F (x) = cxkeax, F (x) = cxkeax sin bx, F (x) = cxkeax cos bx.

A(D) = (D − a)k+1 annihilates each of the functions eax, xeax, ..., xkeax, so it annihilates

F (x) = (a0 + a1x + ... + akxk)eax

for all values of the constants a0, a1, ..., ak; A(D) = D2 − 2aD + a2 + b2 annihilates both of the functions eax cos bx

and eax sin bx, so it annihilates

F (x) = eax(a0 cos bx + b0 sin bx)

for all values a0, b0; A(D) = (D2 − 2aD + a2 + b2)k+1 annihilates all functions with unknowns cos bx and sin bx, so it

annihilates

F (x) = (a0 + a1x + ... + akxk)eax cos bx + (b0 + b1x + ... + bkxk)eax sin bx.

Example 8.17. We want to solve the initial-value problem y′′ − y′ − 2y = 10 sinx, y(0) = 0, y′(0) = 1. To do

so, we first use the auxiliary polynomial P (r) = (r − 2)(r + 1) to solve for yc(x) = c1e2x + c2e−x. Considering

A(D) =D2 − 2ad + a2 + b2 =D2 + 1, we can therefore write

(D2 + 1)(D2 −D − 2)y = 0⇒ y(x) = c1e2x + c2e−x +A0 sinx +A1 cosx.

The trial solution here is yp(x) = A0 sinx+A1 cosx. Substitution into the original differential equation yields

(−A0 sinx −A1 cosx) − (A0 cosx −A1 sinx) − 2(A0 sinx +A1 cosx) = 10 sinx.

Solving the equation gives A0 = −3, A1 = 1, so that yp(x) = −3 sinx + cosx. Consequently,

y(x) = c1e2x + c2e−x − 3 sinx + cosx.

Now imposing the initial conditions give the unique solution to the given initial-value problem

y(x) = e2x − 2e−x − 3 sinx + cosx.
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9 Systems of Differential Equations

9.1 First-Order Linear Systems

Definition 9.1: First-order linear system

A system of differential equations of the form

dx1
dt

a11(t)x1(t) + a12(t)x2(t) + ... + a1n(t)xn(t) + b1(t),

⋮
dxn
dt

an1(t)x1(t) + an2(t)x2(t) + ... + ann(t)xn(t) + bn(t),

where aij(t) and bi(t) are functions on an interval I is a first-order linear system. If b1 = b2 = ... = bn = 0,

then the system is homogeneous.

Consider when n = 2, the system reduces to

x′1 = a11x1 + a12x2 + b1(t) ⇒ (D − a11)x1 − a12x2 = b1(t)

x′2 = a21x1 + a22x2 + b2(t) ⇒ −a21x1 + (D − a22)x2 = b2(t)

Example 9.2. We want to solve the system

x′1 = x1 + 2x2 x′2 = 2x1 − 2x2.

To do so, rewrite the system in operator form as

(D − 1)x1 − 2x2 = 0 − 2x1 + (D + 2)x2 = 0

To eliminate x2, operate the first equation with D + 2 and adding twice the second equation gives

(D + 2)(D − 1)x1 − 4x1 = 0⇒ (D2 +D − 6)x1 = 0.

Considering the auxiliary polynomial and solving it gives

x1(t) = c1e−3t + c2e2t x2(t) =
1

2
(D − 1)x1 =

1

2
(−4c1e−3t + c2e2t.

Example 9.3. We now want to solve the initial-value problem

x′1 = x1 + 2x2, x′2 = 2x1 − 2x2,

x1(0) = 1, x2(0) = 0.

We solved the general case in example 9.2, so imposing the two conditions yields the following equations:

c1 + c2 = 1 − 4c1 + c2 = 0⇒ (c1, c2) = (0.2,0.8).

Substitution gives the results: x1(t) = 0.2(e−3t + 4e2t, x2(t) = 0.4(e2t − e−3t.
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Most systems of k differential equations that are linear in k unknown functions can be rewritten as equivalent

first-order systems by redefining the independent variables.

Example 9.4. We want to rewrite the linear system

d2x

dt2
− 4y = et d2y

dt2
+ t2 dx

dt
= sin t

as an equivalent first-order system. To do so, consider

x1 = x x2 =
dx

dt
x3 = y x4 =

dy

dt
.

Then, the equations can be replaced by

dx2
dt

− 4x3 = et
dx4
dt

+ t2x2 = sin t

Considering x2 = dx1

dt
and x4 = dx3

dt
gives the following system:

dx1
dt

= x2
dx2
dt

= 4x3 + et
dx3
dt

= x4
dx4
dt

= −t2x2 + sin t.

9.2 Vector formulation

Consider the system of equations

x′1 = a11(t)x1(t) + a12(t)x2(t) + ... + a1n(t)xn(t)

⋮

x′n = an1(t)x1(t) + an2(t)x2(t) + ... + ann(t)xn(t).

This system can be written as the equivalent vector equation

x′(t) = A(t)x(t) + b(t),

where

x(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1(t)
x2(t)
⋮

xn(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x′(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x′1(t)
x′2(t)
⋮

x′n(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

A(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11(t) a12(t) ... a1n(t)
a21(t) a22(t) ... a2n(t)

⋮ ⋮ ⋱ ⋮
an1(t) an2(t) ... ann(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

b(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1(t)
b2(t)
⋮

bn(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Let Vn(I) denote the set of all n-vector functions defined on an interval I. Note that Vn(I) is a vector space.

Definition 9.5: Wronskian

Let x1(t), x2(t), ..., xn(t) be vectors in Vn(I). The Wronskian of these vector functions is defined by

W [x1, x2, ..., xn] (t) = det ([x1(t) x2(t) ... xn(t)])
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Theorem 9.6

Let x1(t), x2(t), ..., xn(t) be vectors in Vn(I). If W [x1, x2, ..., xn] (t0) is nonzero at some t0 ∈ I, then

{x1(t), x2(t), ..., xn(t)} is linearly independent on I.

Proof. Consider c1x1(t) + c2x2(t) + ... + cnxn(t) = 0. This is equivalent to the vector equation

X(t)c = 0,

where c = [c1 c2 ... cn]
T

and X(t) = [x1(t) x2(t) ... xn(t)]. Assuming

det([X(t0)]) =W [x1, x2, ..., xn] (t0) ≠ 0,

the only solution to this n×n system of linear equations is c = 0. Consequently, {x1(t), x2(t), ..., xn(t)} is linearly

independent on I if such t0 exists in I.

Definition 9.7: Vector differential equation

A system of linear differential equations written in the vector form

x′(t) = A(t)x(t) + b(t)

is a vector differential equation.

The solutions to the general first-order linear system of differential equations is equivalent to solving for all column

vector functions x(t) ∈ Vn(I) that satisfies

x′(t) = A(t)x(t) + b(t)

9.3 General Results for First-Order Linear Differential Systems

Theorem 9.8

The initial value problem

x′(t) = A(t)x(t) + b(t), x(t0) = x0,

where A(t) and b(t) are continuous on an interval I, has a unique solution on I.

Proof. The proof is omitted.

Consider the homogeneous vector differential equations x′(t) = A(t)x(t) first. Here, A is an n × n matrix function.

Theorem 9.9

The set of all solutions to x′(t) = A(t)x(t), where A(t) is an n × n matrix function that is continuous on an

interval I, is a vector space of dimension n.
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Proof. Consider the set of all solutions S satisfying x′ = A(t)x(t). Considering T (x) = Ax and D(x) = x′ as linear

transformations, so is

(D − T )(x) = x′ −Ax.

Since S = ker(D − T ), it is definitely a subspace of Vn(I).
Now proving dim [S] = n by constructing a basis for S. Claim that there exist n linearly independent solutions

to x′ = Ax. Let ei denote the i-th column vector of the identity matrix In, then the initial value problem

x′i(t) = A(t)xi(t) xi(t0) = ei i = 1,2, ..., n

has a unique solution xi(t). Furthermore, W [x1, x2, ..., xn] (t0) = det(In) = 1 ≠ 0 for any t0 ∈ I, so that

{x1(t), x2(t), ..., xn(t)} is linearly independent on I. Now let x(t) be any real solution to x′ = Ax on I. Since

x1(t0), x2(t0), ..., xn(t0) is the standard basis for Rn, there is

x(t0) = c1x1(t0) + c2x2(t0) + ... + cnxn(t0)

for some scalars c1, c2, ..., cn. Therefore, x(t) is the unique solution to the initial value problem

x′(t) = A(t)x(t) x(t0) = c1x1(t0) + c2x2(t0) + ... + cnxn(t0).

Considering x(t) = u(t) = c1x1(t) + c2x2(t) + ...+ cnxn(t). Any solution to x′ = Ax on I can be written as a linear

combination of the n linearly independent solutions x1(t), x2(t), ..., xn(t), and hence, {x1(t), x2(t), ..., xn(t)} is

a basis for the solution space. The proof follows.

Definition 9.10: Fundamental solution set

Let A(t) be an n×nmatrix function that is continuous on an interval I. Any set of n solutions, {x1, x2, ..., xn},

to x′ = Ax that is linearly independent on I is a fundamental solution set on I. The corresponding matrix

X(t) defined by

X(t) = [x1 x2 ...xn]

is a fundamental matrix for the vector differential equation x′ = Ax.

Example 9.11. Consider the vector differential equation

x′ =
⎡⎢⎢⎢⎢⎣

1 2

−2 1

⎤⎥⎥⎥⎥⎦
x,

and let

x1(t) =
⎡⎢⎢⎢⎢⎣

−et cos 2t
et sin 2t

⎤⎥⎥⎥⎥⎦
x2(t) =

⎡⎢⎢⎢⎢⎣

et sin 2t

et cos 2t

⎤⎥⎥⎥⎥⎦
.

We want to verify that {x1, x2} is a fundamental set of solutions, and calculate both the general solution and

the initial value problem x′ = Ax, x(0) =
⎡⎢⎢⎢⎢⎣

3

2

⎤⎥⎥⎥⎥⎦
. To verify the fundamental set of solutions, consider

x′1 =
⎡⎢⎢⎢⎢⎣

et(− cos 2t + 2 sin 2t)
et(sin 2t + 2 cos 2t)

⎤⎥⎥⎥⎥⎦
x′2 =

⎡⎢⎢⎢⎢⎣

et(sin 2t + 2 cos 2t)
et(cos 2t − 2 sin 2t)

⎤⎥⎥⎥⎥⎦
.
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It follows that x′1 = Ax1 and x′2 = Ax2. Furthermore,

W [x1, x2] (t) =
RRRRRRRRRRRRR

−et cos 2t et sin 2t

et sin 2t et cos 2t

RRRRRRRRRRRRR
= −e2t ≠ 0.

Hence, {x1, x2} is linearly independent on any interval. Hence, it is a fundamental set of solutions for the

given vector differential equation. The general solution is then

x(t) = c1x1(t) + c2x2(t) =
⎡⎢⎢⎢⎢⎣

et(−c1 cos 2t + c2 sin 2t)
et(c1 sin 2t + c2 cos 2t)

⎤⎥⎥⎥⎥⎦
.

Imposing the initial condition gives
⎡⎢⎢⎢⎢⎣

−c1
c2

⎤⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎣

3

2

⎤⎥⎥⎥⎥⎦
,

so that c1 = −3 and c2 = 2. Hence,

x1(t) = et(3 cos 2t + 2 sin 2t) x2(t) = et(−3 sin 2t + 2 cos 2t).

Now consider nonhomogeneous vector differential equations.

Theorem 9.12

Let A(t) be a matrix function that is continuous on an interval I, and let {x1, x2, ..., xn} be a fundamental

solution set on I for the vector differential equation x′(t) = A(t)x(t). If xp(t) is any particular solution to

the nonhomogeneous vector differential equation

x′(t) = A(t)x(t) + b(t)

on I, then every solution on I is of the form

x(t) = c1x1 + c2x2 + ... + cnxn + xp.

Proof. Since x(p) is a solution,

x′p(t) = A(t)xp(t) + b(t).

Now consider any other solution u(t) such that u′(t) = A(t)u(t) + b(t). Subtracting the two gives

(u − xp)′ = A(u − xp).

Thus, the vector function x = u − xp is a solution to the associated homogeneous system x′ = Ax on I / Since

{x1, x2, ..., xn} spans the solution space, it follows that

u − xo = c1x1 + c2x2 + ... + cnxn ⇒ u = c1x1 + c2x2 + ... + cnxn + xp.
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9.4 Vector Differential Equations: Nondefective Coefficient Matrix

Consider homogeneous linear systems x′ = Ax where A is an n × n matrix of real constants. Consider example 9.2

in vector form, where the solution is

x1(t) =
⎡⎢⎢⎢⎢⎣

e−3t

−2e−3t

⎤⎥⎥⎥⎥⎦
x2(t) =

⎡⎢⎢⎢⎢⎣

e2t

1
2
e2t.

⎤⎥⎥⎥⎥⎦

Note that both of the solutions are of the form x(t) = eλtv, where λ is a scalar and v is a constant vector. Now,

differentiating x(t) = eλtv with respect to t yields

x′ = λeλtv = Ax.

Thus, x(t) = eλtv is a solution if and only if

λeλtv = eλtAv⇒ Av = λv.

Theorem 9.13

Let A be an n × n matrix of real constants, and let λ be an eigenvalue of A with corresponding eigenvector

v. Then,

x(t) = eλtv

is a solution to the constant coefficient vector differential equation x′ = Ax on any interval.

Example 9.14. Consider the general solution to

x′1 = 2x1 + x2 x′2 = −3x1 − 2x2.

The corresponding vector differential equation is

x′ =
⎡⎢⎢⎢⎢⎣

2 1

−3 −2

⎤⎥⎥⎥⎥⎦
x⇒ det(A − λI) = λ2 − 1.

It follows that A has eigenvalues λ = ±1.

Eigenvalue λ1 = 1: (A − λ1v) = 0 has solution v = r(1,−1). Therefore,

x1(t) = et
⎡⎢⎢⎢⎢⎣

1

−1

⎤⎥⎥⎥⎥⎦
.

Eigenvalue λ2 = −1: (A − λ2v) = 0 has solution v = s(1,−3). Therefore,

x2(t) = e−t
⎡⎢⎢⎢⎢⎣

1

−3

⎤⎥⎥⎥⎥⎦
.

Considering the Wronskian, W [x1, x2] (t) = −2 ≠ 0, so that {x1, x2} is linearly independent on any interval.

The general solution is therefore

x(t) =
⎡⎢⎢⎢⎢⎣

c1e
t + c2e−t

−c1et − 3c2e
−t

⎤⎥⎥⎥⎥⎦

85



9.4 Vector Differential Equations: Nondefective Coefficient Matrix stanle

Theorem 9.15

Let A be an n×n matrix of real constants. If A has n real linearly independent eigenvectors v1, v2, ..., vn with

corresponding real eigenvalues λ1, λ2, ..., λn, not necessarily distinct, then the vector functions {x1, x2, ..., xn}
defined by

xk(t) = eλktvk, k = 1,2, ..., n,

for all t, are linearly independent solutions to x′ = Ax on any interval. The general solution to this vector

differential equation is

x(t) = c1x1 + c2x2 + ... + cnxn.

Proof. Each xk(t) satisfies x′ = Ax. Now consider

W [x1, x2, ..., xn] = e(λ1+λ2+...+λn)tdet ([v1 v2 ... vn]) ≠ 0.

Since the eigenvectors are linearly independent by assumption, the solutions are linealry independent on any

interval. Thus, {x1, x2, ..., xn} is a fundamental solution set to the vector differential equation.

Generally, let A be an n × n matrix of real constants. Suppose λ is a real eigenvalue of A with corresponding

linearly independent eigenvectors v1, v2, ..., vk, then k linearly independent solutions to x′ = Ax are xj(t) = eλtvj ,
j = 1,2, ..., k. Suppose λ = a+ ib is a complex eigenvalue of A with corresponding linearly independent eigenvectors

v1, v2, ..., vk, where vj = rj + isj , then 2k real-valued linearly independent solutions to x′ = Ax are

x11(t) = eat(cos btr1 − sin bts1) x12(t) = eat(sin btr1 + cos bts1)

⋮

xk1(t) = eat(cos btrk − sin btsk) xk2(t) = eat(sin btrk + cos btsk).
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