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1 Chapter 2

Problem 1: Boyd 2.2

Show that a set is convex if and only if its intersection with any line is convex. Show that a set is affine if

and only if its intersection with any line is affine.

Solution. The intersection of two convex sets is convex. Therefore if S is a convex set, the intersection of S

with a line is also convex. Conversely, suppose the intersection of S with any line is convex. Then for any two

distinct points x1, x2 ∈ S, the intersection of S with the line through x1, x2 is convex. The convex combination is

contained in the intersection, hence in S.

Problem 2: Boyd 2.4

Show that the convex hull of a set S is the intersection of all convex sets that contain S. (The same method

can be used to show that the conic, or affine, or linear hull of a set S is the intersection of all conic sets, or

affine sets, or subspaces that contain S.)

Solution. Let H be the convex hull of S and A be the intersection of all convex sets that contain S. It suffices to

prove that H ⊆ A and A ⊆H.

First we show H ⊆ A. Suppose x ∈ H. Now let D be any convex set such that S ⊆ D, so all points in S are in D.

Since D is convex, and x is a convex combination of x1, x2, ..., xn, x ∈ D. It follows that x ∈ A. Conversely, since

H is convex and contains S, then we must have H =D for some D.

Problem 3: Boyd 2.5

What is the distance between two parallel hyperplanes {x ∈ Rn ∶ aTx = b1} and {x ∈ Rn ∶ aTx = b2}?

Solution. Take two points x1 = ( b1
∥a∥22

)a, x2 = ( b2
∥a∥22

)a. The distance is d = ∥x1 − x2∥2 = ∣b1 − b2∣/∥a∥2.
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Problem 4: Boyd 2.11

Hyperbolic sets. Show that the hyperbolic set {x ∈ R2
+
∶ x1x2 ≥ 1} is convex. As a generalization, show that

{x ∈ Rn
+
∶ ∏ni=1 xi ≥ 1} is convex. Hint. If a, b ≥ 0 and 0 ≤ θ ≤ 1, then aθb1−θ ≤ θa + (1 − θ)b.

Solution. Consider a convex combination z of two points (x1, x2) and ∶ (y1, y2) in the set. If x ⪰ y, then z =
θx + (1 − θ)y ⪰ y. Suppose y ã 0 and x ã y Then

(θx1 + (1 − θy1)(θx2 + (1 − θ)y2) = θ2x1x2 + (1 − θ)2y1y2 + θ(1 − θ)x1y2 + θ(1 − θ)x2y1

= θx1x2 + (1 − θ)y1y2 − θ(1 − θ)(y1 − x1)(y2 − x2)

≥ 1.

(b) Assume that ∏i x1 ≥ 1 and ∏i y1 ≥ 1. Then

∏
i

(θx1 + (1 − θ)yi) ≥∏xθi y
(

i1 − θ) = (∏
i

xi)θ(∏
i

yi)1−θ ≥ 1.

Problem 5: Boyd 2.16

Show that if S1 and S2 are convex sets in Rm×n, then so is their partial sum

S = {(x, y1 + y2) ∶ x ∈ Rm, y1, y2 ∈ Rn, (x, y1) ∈ S1, (x, y2) ∈ S2}.

Solution. Consider two points (x1, y11 + y12), (x2, y21 + y22) ∈ S. For 0 ≤ θ ≤ 1,

θ(x1, y11 + y12) + (1 − θ)(x2, y21 + y22) = (θx1 + (1 − θ)x2, (θy11 + (1 − θ)y21 + (θy12 + (1 − θ)y22)) is in S by the

convexity of S1 and S2.

Problem 6: Boyd 2.23

Give an example of two closed convex sets that are disjoint but cannot be strictly separated.

Solution. C = {x ∈ R2 ∶ x2 ≤ 0} and D = {x ∈ R2
+
∶ x1x2 ≥ 1}.

Problem 7: Boyd 2.29

Cones in R2. Suppose K ∈ R2 is a closed convex cone.

(a) Give a simple description of K in terms of the polar coordinates of its elements (x = r(cosφ, sinφ) with

r ≥ 0.

(b) Give a simple description of K∗, and draw a plot illustrating the relation between K and K∗.

(c) When is K pointed?

(d) When is K proper (hence, defines a generalized inequality)? Draw a plot illustrating what x ⪯K y means

when K is proper.
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Solution. (a) In R2, a cone K is a fraction of R2. It can be expressed as K = {(r cosφ, r sinφ ∶ r ≥ 0, α ≤ φ ≤ β}. If

β − α = 180○, this gives a halfspace.

(b) By definition, K∗ is the intersection of all halfspaces xT y ≥ 0 where x ∈ K. However, if K is pointed, then

K∗ = {y ∶ y1 cosα + y2 sinα ≥ 0, y1 cosβ + y2 sinβ ≥ 0}. If K is a halfspace, K = {x ∶ vTx ≥ 0}, K∗ = {tv ∶ t ≥ 0}.

(c) K is pointed when β − α = 180○.

(d) In order for K to be proper, it has to be closed, convex, and pointed. The interior of K should also be

nonempty. K = {r cosφ, r sinφ ∶ r ≥ 0, α ≤ φ ≤ β}

Problem 8: Boyd 2.32

Find the dual cone of {Ax ∶ x ⪰ 0}, where A ∈ Rm×n.

Solution. K∗ = {y ∶ AT y ⪰ 0}.

Problem 9: Boyd 2.36

Euclidean distance matrices. Let x1, ..., xn ∈ Rk. The matrix D ∈ Sn defined by Dij = ∥xi − xj∥22 is called a

Euclidean distance matrix. It satisfies some obvious properties such as Dij = Dji, Dii = 0, Dij ≥ 0, and

D
1
2

ik ≤D
1
2

ij +D
1
2

jk. We now pose the question: When is a matrix D ∈ Sn a Euclidean distance matrix (for some

points in Rk, for some k? A famous result answers this question: D ∈ Sn is a Euclidean distance matrix if

and only if Dii = 0 and xYDx ≤ 0 for all x with 1Tx = 0.

Show that the set of Euclidean distance matrices is a convex cone. Find the dual cone.

Solution. The set of Euclidean distance matrices in Sn is a closed convex cone because it is the intersection of

infinitely many halfspaces defined by eTi Dei ≤ 0, eTi Dei ≥ 0, xTDx = ∑j,k xjxjDjk ≤0, for all i = 1, ..., n, and all x

with 1Tx = 1.

The dual cone is K∗ = conv({−×T ∶ 1Tx = 1} ∪ {e1eT1 ,−e1eT1 , ..., eneTn ,−eneTn}).

2 Chapter 3

Problem 10: Boyd 3.2

Level sets of convex, concave, quasiconvex, and quasiconcave functions. Some level sets of a function f are

shown below. Could f be convex, concave, quasiconvex, quasiconcave? Explain your answer.

Solution. For the first graph, the level sets are convex, so the function might be convex or quasiconvex. For the

second graph, the level sets are convex, so the function might be concave or quasiconcave.

Problem 11: Boyd 3.3

Inverse of an increasing convex function. Suppose F ∶ R → R is increasing and convex on its domain (a, b).
Let g denote its inverse, i.e., the function with domain (f(a), f(b)) and g(f(x)) = x for x ∈ (a, b). What can

you say about convexity or concavity of g?
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Solution. The hypograph of g is hypo g = {(y, t) ∶ t ⩽ g(y)} = {(y, t) ∶ f(t) ⩽ y} =
⎡⎢⎢⎢⎢⎣

0 1

1 0

⎤⎥⎥⎥⎥⎦
epi f , so g is concave.

Problem 12: Boyd 3.16

For each of the following functions determine whether it is convex, concave, quasiconvex, or quasiconcave.

(a) f(x) = ex − 1 on R.

(b) f(x1, x2) = x1x2 on R2
++

.

(c) f(x1, x2) = 1
x1x2

on R2
++

.

(d) f(x1, x2) = x1

x2
on R2

++
.

(e) f(x1, x2) = x2
1

x2
on R ×R++.

(f) f(x1, x2) = xα1x1−α2 , where α ∈ [0,1], on R2
++

.

Solution. (a) Convex, quasiconvex, quasiconcave.

(b) ∇2f(x) =
⎡⎢⎢⎢⎢⎣

0 1

1 0

⎤⎥⎥⎥⎥⎦
is neither positive semidefinite nor negative semidefinite. Hence, f is neither convex nor

concave. It is quasiconcave because superlevel sets {(x1, x2) ∈ R2
++

∶ x1x2 ⩾ α} are convex.

(c) ∇2f(x) = 1
x1x2

⎡⎢⎢⎢⎢⎣

2x−21 x−11 x−12

x−11 x−12 2x−22

⎤⎥⎥⎥⎥⎦
⪰ 0, so f(x) is convex and quasiconvex.

(d) ∇2f(x) =
⎡⎢⎢⎢⎢⎣

0 −x−22
x−22 2x1x

−3
2

⎤⎥⎥⎥⎥⎦
is neither positive semidefinite nor negative semidefinite. Therefore, f is neither

convex nor concave. It is quasiconvex and quasiconcave, so it’s quasilinear.

(e) ∇2f(x) =
⎡⎢⎢⎢⎢⎣

2x−12 −2x1x−22
−2x1x−22 2x21x

−3
2

⎤⎥⎥⎥⎥⎦
⪰ 0, so f is convex and quasiconvex.

(f) ∇2f(x) =
⎡⎢⎢⎢⎢⎣

α(α − 1)xα−21 x1−α2 α(1 − α)xα−11 x−α2

α(1 − α)xα−11 x−α2 (1 − α)(−α)xα1x−α−12

⎤⎥⎥⎥⎥⎦
= α(1 − α)xα1x1−α2

⎡⎢⎢⎢⎢⎣

−x−21 x−11 x−12

x−11 x−12 x−22

⎤⎥⎥⎥⎥⎦
⪯ 0. Therefore, f is

concave and quasiconcave.

Problem 13: Boyd 3.21

Pointwise maximum and supremum. Show that the following functions f ∶ Rn → R are convex.

(a) f(x) = maxi=1,...,k ∣∣A(i)x − b(i)∣∣, where A(i) ∈ Rm×n, b(i) ∈ Rm and ∣∣⋅∣∣ is a norm on Rm.

(b) f(x) = ∑ri=1∣x∣[i] on Rn, where ∣x∣ denotes the vector with ∣x∣i = ∣xi∣, and ∣x∣[i] is the i th largest

component of ∣x∣. In other words, ∣x∣[1], ∣x∣[2], ..., ∣x∣[n] are the absolute values of the components of x,

sorted in nonincreasing order.

Solution. (a) f is the maximum of k functions ∣∣A(i)x − b(i)∣∣. Each of those functions is convex because it is a

composition of an affine transformation and a norm. f is therefore convex.

4



2 - Chapter 3 stanle

(b) f(x) is the maximum of (n
r
) convex functions, so it is convex.

Problem 14: Boyd 3.29

Representation of piecewise-linear convex functions. A function f ∶ Rn → R, with domf = Rn, is called

piecewise-linear if there exists a partition of Rn as Rn =X1∪X2∪...∪XL, where intXi ≠ ∅ and intXi∩intXj =
∅ for i ≠ j and a family of affine functions aT1 x+ b1, ..., aTLx+ bL such that f(x) = aTi x+ b1, ..., aTLx+ bL. Show

that this means that f(x) = max{aT1 x + b1, ..., aTLx + bL}.

Solution. By Jensen’s inequality, for all x, y ∈ Rn and t ∈ [0,1],

f(y + t(x − y)) ⩽ f(y) + t(f(x) − f(y)) ⇒ f(x) ⩾ f(y) + [f(y + t(x − y)) − f(y)]/t.

Suppose x ∈Xi, choose any y ∈ intXj , for some j, so

aTi x + bi ⩾ aTj y + bj + [aTj (y + t(x − y)) + bj − aTj y − bj]/t = aTj x + bj .

The above inequality is true for any j, so aTi x + bi ⩾ max(aTj x + bj), and the equality holds when the maximum

of right hand side is taken.

Problem 15: Boyd 3.30

Convex hull or envelope of a function. The convex hull or convex envelope of a function f ∶ Rn → R is defined

as

g(x) = inf{t ∶ (x, t) ∈ conv epif} .

Geometrically, the epigraph of g is the convex hull of the epigraph of f . Show that g is the largest convex

underestimator of f . In otherwords, show that if h is convex and satisfies h(x) ⩽ f(x) for all x, then

h(x) ⩽ g(x) for all x.

Solution. g is convex by the epigraph. Let h be a convex lower bound on f . Since h is convex, its epigraph is a

convex set, and the epigraph of f is a subset of epigraph of h since h is a lower bound on f . The convex hull of

a set is the intersection of all the convex sets that contain the set, so conv epif = epig ⊂ epih.

Problem 16: Boyd 3.32

Products and ratios of convex functions. In general the product or ratio of two convex functions is not convex.

However, there are some results that apply to functions on R. Prove the following.

(a) If f and g are convex, both nondecreasing (or nonincreasing), and positive functions on an interval,

then fg is convex.

(b) If f and g are concave, positive, with one nondecreasing and the other nonincreasing, then fg is

concave.

(c) If f is convex, nondecreasing, and positive, and g is concave, nonincreasing, and positive, then f/g is

convex.
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Solution. (a) For 0 ⩽ θ ⩽ 1,

f(θx + (1 − θ)y)g(θx + (1 − θ)y) ⩽ (θf(x) + (1 − θ)f(y))(θg(x) + (1 − θg(y))

= θf(x)g(x) + (1 − θ)f(y)g(y) + θ(1 − θ)(f(y) − f(x))(g(x) − g(y)

The third term is less than or equal to zero if f and g are both increasing or both decreasing. Therefore,

f(θx + (1 − θ)y)g(θx + (1 − θ)y) ⩽ θf(x)g(x) + (1 − θ)f(y)g(y).

(b) Same as (a), but reverse the inequalities.

(c) 1/g is convex, positive and increasing, so same as (a).

Problem 17: Boyd 3.34

The Minkowski function. The Minkowski function of a convex set C is defined as

MC(x) = inf {t > 0 ∶ t−1x ∈ C} .

(a) Draw a picture giving a geometric interpretation of how to find MC(x).

(b) Show that MC is homogeneous, i.e., MC(αx) = αMC(x) for α ⩾ 0.

(c) What is dom MC?

(d) Show that MC is a convex function.

(e) Suppose C is also closed, symmetric (if x ∈ C then −x ∈ C ), and has nonempty interior. Show that MC

is a norm. What is the corresponding unit ball?

Solution. (a)

(b) If α > 0, then MC(αx) = inf {t > 0 ∶ t−1αx ∈ C} = α inf {t/α > 0 ∶ t−1αx ∈ C} = αMC(x).
If α = 0, then MC(αx) = 0 if 0 ∈ C, ∞ if 0 ∉ C.

(c) dom MC = {x ∶ x/t ∈ C} for some t > 0.

(d) dom MC is a convex set. Suppose x, y ∈ dom MC . The convexity of C tells that

θx + (1 − θ)y
θtx + (1 − θ)ty

=
θtx(x/tx) + (1 − θ)ty(y/ty)

θtx + (1 − θ)ty
∈ C.

This is true for any tx, ty > 0. Then,

MC(θx + (1 − θ)y) ⩽ θMC(x) + (1 − θ)MC(y).

(e) It the norm with unit ball C.

Problem 18: Boyd 3.35

Support function calculus. Recall that the support function of a set C ⊆ Rn is defined as SC(y) =
sup{yTx ∶ x ∈ C}. On page 81 we showed that SC is a convex function.
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(a) Show that SB = SconvB .

(b) Show that SA+B = SA + SB .

(c) Show that SA∪B =max{SA, SB}.

(d) Let B be closed and convex. Show that A ⊆ B if and only if SA(y) ⩽ SB(y) for all y.

Solution. (a) Let A = conv B. Since B ⊆ A, SB(y) ⩽ SA(y). Suppose we have strict inequality yTu < yT v for all

u ∈ B and some v ∈ A, a contradiction. It follows that SB(y) = SA(y).
(b) SA+B(y) = sup{yT (u + v) ∶ u ∈ A,v ∈ B} = sup{yTu ∶ u ∈ A} + sup{yT v ∶ u ∈ B} = SA(y) + SB(y).
(c) SA∪B(y) = sup{yTu ∶ u ∈ A ∪B} =max{SA(y), SB(y)}.

(d) Suppose A ⊈ B, then exists x0 ∈ A and x0 ∉ B. Since B is closed and convex, x0 can be separated by a

hyperplane. It follows that SB(y) < yTx0 ⩽ SA(y).

3 Chapter 4

Problem 19: Boyd 4.2

Consider the optimization problem

min f0(x) = −
m

∑
i=1

log(bi − aTi x)

with domain domf0 = {x ∶ Ax ≺ b}, where A ∈ Rm×n. We assume that the domain is nonempty. Prove the

following facts (which include the results quoted without proof on page 141).

(a) domf0 is unbounded if and only if there exists a v ≠ 0 with Av ⪯ 0.

(b) f0 is unbounded below if and only if there exists a v with Av ⪯ 0, Av ≠ 0 and only if there exists no

z ≻ 0 such that AT z = 0. This follows from the theorem of alternatives in example 2.21, page 50.

(c) If f0 is bounded below then its minimum is attained, i.e., there exists an x that satisfies the optimality

condition in (4.23).

(d) The optimal set is affine: Xopt = {x∗ + v ∶ Av = 0}, where x∗ is any optimal point.

Solution. Because the domain is nonempty, we assume x0 ∈ domf .

(a) If such a v exists, then domf0 is unbounded, since x0 + tv ∈ domf0 for all t ⩾ 0. Conversely, suppose xk

is a sequence of points in domf0 with norm approaching infinity. Define vk = xk/∥xk∥2. The sequence has

a convergent subsequence because ∥vk∥2 = 1 for all k. Consider its limit v gives ∥v∥2 = 1. Since for all k,

aTi v
k < bi/∥xk∥2,

there is aTi v ⩽ 0, therefore Av ⪯ 0 and v ≠ 0.
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(b) If there exists such a v, let j be such that aTj v < 0. For t ⩾ 0,

f0(x0 + tv) = −
m

∑
i=1

log(bi − aTi x0 − taTi v) ⩽ −
m

∑
i≠j

log(bi − aTi x0) − log(bj − aTj x0 − taTj v).

Clearly, the right hand side decreases without bound as t increases, hence f0 is not bounded below.

Conversely, suppose f is unbounded below. Let xk be a sequence with b −Axk ≻ 0, and f0(xk) → −∞. By

the convexity,

f0(xk) ⩾ f0(x0) +
m

∑
i=1

1

bi − aTi x0
aTi (xk − x0) = f0(x0) +m −

m

∑
i=1

bi − aTi xk

bi − aTi x0
,

so if f0(xk) → −∞, maxi(bi − aTi xk) → −∞.

(c) Assume that rank(A) = n. If domf0 is bounded, then the result follows from the fact that the sublevel

sets of f0 are closed. If domf0 is unbounded, let v be a direction in which it is unbounded, Av ⪯ 0. Since

rank(A) = 0, Av ≠ 0, implying f0 is unbounded. Then, if rank(A) = n, then f0 is unbounded below if and

only if its domain is bounded, and therefore its minimum is attained.

(d) Consider rank(A) = n. The hessian matrix of f0 at x is

∇2f(x) = ATdiag(d)A di =
1

(bi − aTi )2
,

which is positive definite if rank(A) = n, i.e., f0 is strictly convex. Therefore, the optimal point is unique.

Problem 20: Boyd 4.6

Handling convex equality constraints. A convex optimization problem can have only linear equality constraint

functions. In some special cases, however, it is possible to handle convex equality constraint functions, i.e.,

constraints of the form g(x) = 0, where g is convex. We explore this idea in this problem.

Consider the optimization problem of minimizing f0(x) subject to

fi(x) ⩽ 0 h(x) = 0,

where fi and h are convex functions with domain Rn. Unless h is affine, this is not a convex optimization

problem. Consider the related problem of minimizing f0(x) subject to

fi(x) ⩽ 0 h(x) ⩽ 0,

where the convex equality constraint has been relaxed to a convex inequality. This problem is, of course,

convex.

Now suppose we can guarantee that at any optimal solution x∗ of the convex problem, we have h(x∗) = 0,

i.e., the inequality h(x) ⩾ 0 is always active at the solution. Then we can solve the (nonconvex) problem of

the equality by solving the convex problem of the inequality. Show that this is the case if there is an index

r such that f0 is monotonically increasing in xr, f1, ..., fm are nonincreasing in xr, and h is monotonically

decreasing in xr.

8
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Solution. Suppose x∗ is optimal, and h(x∗) < 0. We can then decrease xr while staying in the boundary of g. By

decreasing xr, we decrease the objective, preserve the inequalities fi(x) ⩽ 0, and increase the function h.

Problem 21: Boyd 4.8

Some simple LPs. Give an explicit solution of each of the following LPs.

(a) Minimizing a linear function cTx over an affine set Ax = b.

(b) Minimizing a linear function cTx over a halfspace aTx ⩽ b.

(c) Minimizing a linear function cTx over a rectangle l ⪯ x ⪯ u.

(d) Minimizing a linear function cTx over a probability simplex 1Tx = 1, x ⪰ 0.

(e) Minimizing a linear function cTx over a unit box with a total budget constraint 1Tx ⩽ α,0 ⪯ x ⪯ 1.

(f) Minimizing a linear function cTx over a unit box with a weighted budget constraint dTx = α.

Solution. Do this problem part by part.

(a) Consider the normal case, where c is orthogonal to the nullspace of A. Then c = ATλ + ĉ, Aĉ = 0. Then

if ĉ = 0, on the feasible set the objective function reduces to

cTx = λTAx + ĉTx = λT b.

The optimal value is λT b. Otherwise, if b ∉ R(A), the problem is infeasible and the optimal value is ∞,

orelse the optimal value is unbounded negatively so the optimal value is −∞.

(b) This is always feasible, so c = aλ + ĉ, where aT ĉ = 0. IF λ > 0, the problem is bounded below. Choose

x = −ta, and cTx→ −∞ and aTx− b = −taTa− b ⩽ 0 for large t. If ĉ ≠ 0, the problem is unbounded below. If

c = aλ for some λ ⩽ 0, the optimal value is cTab = λb.

(c) The problem can be solved by separating components, minimizing over each component of x indepen-

dently. The optimal x∗i minimizes cixi subject to the constraint li ⩽ xi ⩽ ui. If ci > 0, when x∗i = li. If ci < 0,

then x∗i = ui. If ci = 0, then any xi in the interval [li, ui] is optimal. Therefore,

p∗ = lT c+ + uT c−,

where c+i =max{ci,0}, c−i =max{−ci,0}.

(d) Suppose the components of c re sorted in increasing order, then cTx ⩾ c1(1Tx) = cmin for all feasible x.

The optimal value is then p∗ = cmin.

(e) In the case of an inequality constraint 1Tx ⩽ α with α being an integer, the optimal value is the sum

of the α smallest nonpositive coefficients of c. If α is not an integer, the sum is taken to c⌊α⌋ and a term

c1+⌊α⌋(a − ⌊α⌋) is added.

(f) Considering yi = dixi, the problem becomes minimizing ∑ni=1(ci/di)yi subject to 1Tx = α. Sort the ratios

in increasing order gives
c1
d1

⩽ c2
d2

⩽ ... ⩽ c n
dn
,

9
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To minimize, consider y1 = d1, ..., yk = dk, yk+1 = α − (d1 + ... + dk), yk+2 = ... = yn = 0, where

k =max{i ∈ {1, ..., n} ∶ d1 + ... + di ⩽ α}.

Problem 22: Boyd 4.9

Square LP. Consider the LP minimize cTx subject to Ax ⪯ b with A square and nonsingular. Show that the

optimal value is given by

p∗ = cTA−1b

for A−T c ⪯ 0, and −∞ otherwise.

Solution. Consider y = Ax. Then the problem is equivalent to minimizing cTA−1y subject to y ⪯ b. If A−T c ⪯ 0,

the optimal solution is y = b, with p∗ = cTA−1b. Otherwise, the LP is unbounded below.

Problem 23: Boyd 4.21

Some simple QCQPs. Give an explicit solution of each of the following QCQPs.

(a) Minimizing a linear function cTx over an ellipsoid xTAx ⩽ 1 centered at the origin. What is the solution

is not convex (A ∉ Sn
+
)?

(b) Minimizing a linear function cTx over an ellipsoid (x − xc)TA(x − xc) ⩽ 1, where A ∈ Sn
++

and c ≠ 0.

(c) Minimizing a quadratic form xTBx over an ellipsoid xTAx ⩽ 1 centered at the origin. Also consider the

nonconvex extension with B ∉ Sn
+
.

Solution. Do this problem part by part.

(a) If A ≻ 0, consider y = A1/2x, and c = A−1/2c. The optimization problem becomes minimizing cT y subject

to yT y ⩽ 1. This is minimizing a linear function over the unit ball, giving y∗ = −c/∥c∥2.

(b) Consider y = A1/2(x − xc), x = A−1/2y + xc. The optimization problem becomes minimizing cTA−1/2y +
cTxc subject to yT y ⩽ 1. This is another minimization question over the unit ball, so

y∗ = −(1/∥A−1/2c∥2)A−1/2c, x∗ = xc − (1/∥A−1/2c∥2)A−1c.

(c) If B ⪰ 0, then the optimal value is zero. In the general case, consider

λmin(B) = inf
XT x=1

xTBx.

To solve the optimization problem of minimizing xTBx subject to xTAx ⩽ 1 with a ≻ 0, consider y =
A1/2x. The problem becomes minimizing yTA−1/2BA−1/2y subject to yT y ⩽ 1. Hence, the optimal value is

λmin(A−1/2BA−1/2) if yT y = 1.
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3 - Chapter 4 stanle

Problem 24: Boyd 4.22

Consider the QCQP of minimizing (1/2)xTPx + qTx + r subject to xTx ⩽ 1, with P ∈ Sn
++

. Show that

x∗ = −(P + λI)−1q where λ =max{0, λ}, and λ is the largest solution of the nonlinear equation

qT (P + λI)−2q = 1.

Solution. x is optimal if and only if xTx < 1, Px+q = 0 or xTx = 1, Px+q = −λx. Consider Px = −q. If the solution

∥P −1q∥22 ⩽ 1, it is optimal. Otherwise, from the optimality conditions, x must satisfy ∥x∥2 = 1 and (P + λ)x = −q
for some λ ⩾ 0. Define f(λ) = ∥(P + λ)−1q∥22. f(0) = ∥P −1q∥22 > 1. f is monotonically decreasing and has limit

zero as λ→∞. Therefore the nonlinear equation f(λ) = 1 has exactly one nonnegative solution λ. Solving for λ

gives

x∗ = −(P + λI)−1q.
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